
Lesson on Lab 1

MIPS Calling Convention
• It is all about supporting procedures in hardware
• A procedure is a set of instructions that performs a specific

task and then comes back to the point of origin
• When a procedure is called by a caller, the program must

follow some steps
1. Put parameters in a place where the called procedure (callee)

can access them
2. Transfer control to the procedure
3. Acquire enough space on the memory needed for the

procedure. This memory is called stack
4. Perform the task
5. Give back the result to the caller
6. Return control to the point of origin

2

What is stack

• Every procedure can access a few number of registers
• What if it needs more?

– It spills into some place in memory called stack
– Every procedure has its own share of memory which is

called stack frame
• What if callee needs to access the same register as

caller does?
– Callee must cover all its tracks on its return, i.e.,
– On the return of the callee, any register needed by the

caller must be restored to its value which it contained
before the procedure call (preserved registers)

 3

Prologue and Epilogue

• Somehow callee must cover its track.
– At the beginning of the procedure, some

preparation must be performed, i.e.,
– (i) allocate required amount of space on the stack

for the callee and (ii) save preserved registers on
the stack

– Likewise, at the end of the procedure, we want to
restore the stack and registers to their previous
state before the procedure was called

Prologue

Epilogue
4

Calling Convention

• The set of rules that defines how registers
should be used and what is the organization of
the stack is called calling convention

• There is no one single MIPS calling convention
• As such, what you will find in the book or

other resources might be slightly different
from how it is handled in SimpleScalar

• But, once you get the idea they all look very
similar

5

High level example
int main

{

 proc1

 {

 …

 }

 proc2

 {

 …

 }

}

Stack

Usually
stack
grows
downward

SP

6

High level example
int main

{

 proc1

 {

 …

 }

 proc2

 {

 …

 }

}

Stack

Usually
stack
grows
downward

SP

…

7

High level example
int main

{

 proc1

 {

 …

 }

 proc2

 {

 …

 }

}

Stack

Usually
stack
grows
downward

…

…

SP

8

High level example
int main

{

 proc1

 {

 …

 }

 proc2

 {

 …

 }

}

Stack

Usually
stack
grows
downward

SP

…

9

High level example
int main

{

 proc1

 {

 …

 }

 proc2

 {

 …

 }

}

Stack

Usually
stack
grows
downward

…

SP

…

10

High level example
int main

{

 proc1

 {

 …

 }

 proc2

 {

 …

 }

}

Stack

Usually
stack
grows
downward

SP

…

11

High level example
int main

{

 proc1

 {

 …

 }

 proc2

 {

 …

 }

}

Stack

Usually
stack
grows
downward

SP

…

12

What is in the stack?
• The organization of the stack might be

different from one assembler to
another
– like the place in the stack frame where

$ra is saved, or the place where $fp
points to

• However, all different structures have
to reserve space to store the following:
– Arguments
– Preserved registers
– The return address ($31 or $ra)
– Local data (like local variables)
– Padding (empty word in this picture)

 * Structure might look
different for other

assemblers 13

MIPS register conventions

14

Let’s do an example
int g(int x, int y)

{

 int a[32];

 ... (calculate using x, y, a);

 a[1] = f(y,x,a[2]);

 a[0] = f(x,y,a[1]);

 return a[0];

}

start of prologue
addiu $sp,$sp,(-160) # allocate the required space
 # on the stack for this stack frame
sw $ra,28($sp) # save the return address
sw $s0,16($sp) # save value of $s0
sw $s1,20($sp) # save value of $s1
sw $s3,24($sp) # save value of $s3
end of prologue

Generate the assembly file

Let’s assume that s0, s1, s3 are used by the
caller. So they must be saved (look at the
shaded rows in the previous slide)

15

Example (cont’d.)
int g(int x, int y)

{

 int a[32];

 ... (calculate using x, y, a);

 a[1] = f(y,x,a[2]);

 a[0] = f(x,y,a[1]);

 return a[0];

}

start of body
... # calculate using $a0, $a1 and a
 # array a is stored at addresses
 # 32($sp) to 156($sp)
save $a0 and $a1 in caller’s stack frame
sw $a0,160(sp) # save $a0 (variable x)
sw $a1,164(sp) # save $a1 (variable y)
first call to function f
lw $a0,164(sp) # arg0 is variable y
lw $a1,160(sp) # arg1 is variable x
lw $a2,40(sp) # arg2 is a[2]
jal f # call f
sw $v0,36(sp) # store value of f into a[1]

a[2] should
be here

16

Example (cont’d.)
int g(int x, int y)

{

 int a[32];

 ... (calculate using x, y, a);

 a[1] = f(y,x,a[2]);

 a[0] = f(x,y,a[1]);

 return a[0];

}

second call to function f
lw $a0,160(sp) # arg0 is variable x
lw $a1,164(sp) # arg1 is variable y
lw $a2,36(sp) # arg2 is a[1]
jal f # call f
sw $v0,32(sp) # store value of f into a[0]
load return value of g into $v0
lw $v0,32($sp) # result is a[0]
end of body

17

Example (cont’d.)
int g(int x, int y)

{

 int a[32];

 ... (calculate using x, y, a);

 a[1] = f(y,x,a[2]);

 a[0] = f(x,y,a[1]);

 return a[0];

}

start of epilogue
lw $s0,16($sp) # restore value of $s0
lw $s1,20($sp) # restore value of $s1
lw $s3,24($sp) # restore value of $s3
lw $ra,28($sp) # restore the return address
addiu $sp,$sp,160 # pop stack frame
end of epilogue
jr $ra # return

18

Example (cont’d.)
int g(int x, int y)

{

 int a[32];

 ... (calculate using x, y, a);

 a[1] = f(y,x,a[2]);

 a[0] = f(x,y,a[1]);

 return a[0];

}

start of epilogue
lw $s0,16($sp) # restore value of $s0
lw $s1,20($sp) # restore value of $s1
lw $s3,24($sp) # restore value of $s3
lw $ra,28($sp) # restore the return address
addiu $sp,$sp,160 # pop stack frame
end of epilogue
jr $ra # return

Is there something strange regarding the
locations of x and y!?

19

Some Notes
• SimpleScalar uses $fp in addition to $sp

– Why is $fp needed when $sp seems to be enough? (you
can find the answer in the book)

– In the book $fp points to the beginning of the stack frame,
but in SimpleScalar …

• Pay attention to the way that arguments are passed
• .frame, .rdata, .aligned, … are called directives

– They are not part of the instruction set
• You might get some empty words after filling up the

stack
– That is used for padding
– To make the size of the stack “double-word aligned”

20

http://en.wikipedia.org/wiki/Assembly_language#Assembly_directives

	Lesson on Lab 1
	MIPS Calling Convention
	What is stack
	Prologue and Epilogue
	Calling Convention
	High level example
	High level example
	High level example
	High level example
	High level example
	High level example
	High level example
	What is in the stack?
	MIPS register conventions
	Let’s do an example
	Example (cont’d.)
	Example (cont’d.)
	Example (cont’d.)
	Example (cont’d.)
	Some Notes

