
CSE 240A Dean Tullsen

Instruction Set Architecture

or
“How to talk to computers”

CSE 240A Dean Tullsen

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Control Signal Spec

Machine Interpretation

ALUOP[0:3] <= InstReg[9:11] & MASK

Machine Language
Program

Assembler
1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

CSE 240A Dean Tullsen

Crafting an ISA

• Designing an ISA is both an art and a science
• ISA design involves dealing in an extremely rare resource

– instruction bits!
• Some things we want out of our ISA

– completeness
– orthogonality
– regularity and simplicity
– compactness
– ease of programming
– ease of implementation

CSE 240A Dean Tullsen

Where are the instructions?

• Harvard architecture • Von Neumann architecture

“stored-program” computerdata
storage

inst
storage

cpu

inst &
data

storage
cpu

L1
data

cache

L1
inst

cache
cpu MemL2

cache

CSE 240A Dean Tullsen

Key ISA decisions

• operations
– how many?
– which ones

• operands
– how many?
– location
– types
– how to specify?

• instruction format
– size
– how many formats?

y = x + b
operation

source operands

destination operand

how does the computer know what
0001 0100 1101 1111
means?

CSE 240A Dean Tullsen

What enables performance in
today’s machines?

• This wasn’t true in the era in which most classical ISAs
were defined…

• Parallelism!!
– Superscalar
– Pipelining
– Multicore

CSE 240A Dean Tullsen

Choice 1: Operand Location

• Accumulator
• Stack
• Registers
• Memory

• We can classify most machines into 4 types: accumulator,
stack, register-memory (most operands can be registers or
memory), load-store (arithmetic operations must have
register operands).

CSE 240A Dean Tullsen

Choice 1B: How Many Operands?
Basic ISA Classes

Accumulator:
1 address add A acc acc + mem[A]

Stack:
0 address add tos tos + next

General Purpose Register:
2 address add A B EA(A) EA(A) + EA(B)
3 address add A B C EA(A) EA(B) + EA(C)

Load/Store:
3 address add Ra Rb Rc Ra Rb + Rc

load Ra Rb Ra mem[Rb]
store Ra Rb mem[Rb] Ra

A load/store architecture has instructions that do either ALU
operations or access memory, but never both.

CSE 240A Dean Tullsen

Alternative ISA’s
• A = X*Y - B*C

Stack Architecture Accumulator GPR GPR (Load-store)

Memory

A
X
Y
B
C
temp

?
12
3
4
5
?

Stack

R1

R2

R3

Accumulator

CSE 240A Dean Tullsen

Trade-offs

Stack
+ -
Accumulator
+ -
GPR
+ -
Load-store
+ -

CSE 240A Dean Tullsen

Choice 2: Addressing Modes
how do we specify the operand we want?

• Register direct R3 R6 = R5 + R3
• Immediate (literal) #25 R6 = R5 +
25

• Direct (absolute) M[10000] R6 = M[10000]

• Register indirect M[R3] R6 = M[R3]
(a.k.a register deferred)

• Memory Indirect M[M[R3]]
• Displacement M[R3 + 10000] ...
• Index M[R3 + R4]
• Scaled M[R3 + R4*d + 10000]
• Autoincrement M[R3++]
• Autodecrement M[R3 - -]

CSE 240A Dean Tullsen

Addressing Mode Utilization

Conclusion?

CSE 240A Dean Tullsen

Displacement Size

• Conclusions – 16 bits is usually enough. If not,
just use another instruction.

CSE 240A Dean Tullsen

Choice 3: Which Operations?

• arithmetic
– add, subtract, multiply, divide

• logical
– and, or, shift left, shift right

• data transfer
– load word, store word

• control flow

Does it make sense to have more complex instructions?
-e.g., square root, mult-add, matrix multiply, cross product ...

CSE 240A Dean Tullsen

Types of branches (control flow)

• conditional branch beq r1,r2, label
• jump jump label
• procedure call call label
• procedure return return

CSE 240A Dean Tullsen

Conditional branch

• How do you specify the destination (target) of a
branch/jump?

• How do we specify the condition of the branch?

CSE 240A Dean Tullsen

Branch distance

• Average distance (in bits needed to specify) from branch to target.
• Conclusions?

CSE 240A Dean Tullsen

Branch condition

Condition Codes
Processor status bits are set as a side-effect of arithmetic instructions
or explicitly by compare or test instructions.
ex: sub r1, r2, r3

bz label

Condition Register
Ex: cmp r1, r2, r3

bgt r1, label

Compare and Branch
Ex: bgt r1, r2, label

CSE 240A Dean Tullsen

Choice 4: Instruction Format

• Tradeoffs?
• Conclusions?

Fixed (e.g., all RISC processors -- SPARC, MIPS, Alpha)

Variable (VAX, ...)

Hybrid

opcode addr1 addr2 addr3

opcode+ spec1 addr1 spec2 addr2 specn addrn ...

CSE 240A Dean Tullsen

The Customer is Always Right

• Compiler is primary customer of ISA
• Features the compiler doesn’t use are wasted
• Register allocation is a huge contributor to performance
• Compiler-writer’s job is made easier when ISA has

– regularity
– primitives, not solutions
– simple trade-offs

• Summary -> simplicity over power

CSE 240A Dean Tullsen

Our desired ISA

• Registers, Load-store
• Addressing modes

– immediate (8-16 bits)
– displacement (12-16 bits)
– register deferred (register indirect)

• Support a reasonable number of operations
• Don’t use condition codes
• Fixed instruction encoding/length for performance
• regularity (several general-purpose registers)

CSE 240A Dean Tullsen

MIPS instruction set architecture

• 32 32-bit general-purpose registers
– R0 always equals zero
– 32 or 16 FP registers

• 8-, 16-, and 32-bit integers, 32- and 64-bit fp data types
• immediate and displacement addressing modes

– register deferred is a subset of displacement

• 32-bit fixed-length instruction encoding

CSE 240A Dean Tullsen

MIPS Instruction Format

CSE 240A Dean Tullsen

RISC vs CISC

• MIPS is a classic RISC architectures (as are SPARC, Alpha,
PowerPC, …)

• RISC stands for Reduced Instruction Set Computer. RISC
architectures are load-store, few formats, minimal
instruction sets.

• They were in contrast to the 70s and 80s which
proliferated CISC ISAs (VAX, Intel x86, various IBM),
which were characterized by complex and comprehensive
instruction sets, and complex instruction decoding.

• RISC architectures thrived not because they supported
fewer operations, but because they enabled parallelism.

CSE 240A Dean Tullsen

MIPS Operations and ISA

• Read on your own!
• Get comfortable with MIPS instructions and formats

CSE 240A Dean Tullsen

A few sample instructions

lw R1, 1000(R2)

add R1, R2, R3

addi R1, R2, #53

jal label

jr R3

beq R1, R5, label

CSE 240A Dean Tullsen

MIPS R2000 vs. VAX 8700

Or “Why RISC?”

ET = IC * CPI * CT

ICMIPS = 2 ICVAX

CPIVAX = 6 CPIMIPS

CSE 240A Dean Tullsen

ISA Key Points

• Modern ISA’s typically sacrifice power and flexibility for
regularity and simplicity; code density for parallelism and
throughput.

• instruction bits are extremely limited, particularly in a
fixed-length instruction format.

• Registers are critical to performance – we want lots of
them, and few strings attached.

• Displacement addressing mode handles the vast majority
of memory reference needs.

