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Instruction Set Architecture

or
“How to talk to computers”
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How to Speak Computer
High Level Language 

Program

Assembly  Language 
Program

Compiler
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Control Signal Spec

Machine Interpretation

ALUOP[0:3] <= InstReg[9:11] & MASK

Machine  Language 
Program

Assembler
1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100
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Crafting an ISA

• Designing an ISA is both an art and a science
• ISA design involves dealing in an extremely rare resource 

– instruction bits!
• Some things we want out of our ISA

– completeness
– orthogonality
– regularity and simplicity
– compactness
– ease of programming
– ease of implementation
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Where are the instructions?

• Harvard architecture • Von Neumann architecture
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Key ISA decisions

• operations
– how many?
– which ones

• operands
– how many?
– location
– types
– how to specify?

• instruction format
– size
– how many formats?

y = x + b
operation

source operands

destination operand

how does the computer know what
0001 0100 1101 1111
means?
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What enables performance in 
today’s machines?

• This wasn’t true in the era in which most classical ISAs 
were defined…

• Parallelism!!
– Superscalar
– Pipelining
– Multicore
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Choice 1:  Operand Location

• Accumulator
• Stack
• Registers
• Memory

• We can classify most machines into 4 types:  accumulator, 
stack, register-memory (most operands can be registers or 
memory), load-store (arithmetic operations must have 
register operands).
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Choice 1B: How Many Operands?
Basic ISA Classes

Accumulator:
1 address add A acc acc + mem[A]

Stack:
0 address add tos tos + next

General Purpose Register:
2 address add A B EA(A) EA(A) + EA(B)
3 address add A B C EA(A) EA(B) + EA(C)

Load/Store:
3 address add Ra Rb Rc Ra Rb + Rc

load Ra Rb Ra mem[Rb]
store Ra Rb mem[Rb] Ra

A load/store architecture has instructions that do either ALU 
operations or access memory, but never both.
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Alternative ISA’s
• A = X*Y - B*C

Stack Architecture Accumulator GPR GPR (Load-store)

Memory

A
X
Y
B
C
temp

?
12
3
4
5
?

Stack

R1

R2

R3

Accumulator
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Trade-offs

Stack
+ -
Accumulator
+ -
GPR
+ -
Load-store
+ -
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Choice 2:  Addressing Modes
how do we specify the operand we want?

• Register direct R3 R6 = R5 + R3
• Immediate (literal) #25 R6 = R5 + 
25

• Direct (absolute) M[10000] R6 = M[10000]

• Register indirect M[R3] R6 = M[R3]
(a.k.a register deferred)

• Memory Indirect M[M[R3] ]
• Displacement M[R3 + 10000] ...
• Index M[R3 + R4]
• Scaled M[R3 + R4*d + 10000]
• Autoincrement M[R3++]
• Autodecrement M[R3 - -]
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Addressing Mode Utilization

Conclusion?
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Displacement Size

• Conclusions – 16 bits is usually enough.  If not, 
just use another instruction.
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Choice 3:  Which Operations?

• arithmetic
– add, subtract, multiply, divide

• logical
– and, or, shift left, shift right

• data transfer
– load word, store word

• control flow

Does it make sense to have more complex instructions?
-e.g., square root, mult-add, matrix multiply, cross product ...
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Types of branches (control flow)

• conditional branch beq r1,r2, label
• jump jump label
• procedure call call label
• procedure return return
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Conditional branch

• How do you specify the destination (target) of a 
branch/jump?

• How do we specify the condition of the branch?
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Branch distance

• Average distance (in bits needed to specify) from branch to target.
• Conclusions?
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Branch condition

Condition Codes
Processor status bits are set as a side-effect of arithmetic instructions  
or explicitly  by compare or test  instructions.
ex: sub r1, r2, r3

bz label

Condition Register
Ex: cmp r1, r2, r3

bgt r1, label

Compare and Branch
Ex: bgt r1, r2, label
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Choice 4:  Instruction Format

• Tradeoffs?
• Conclusions?

Fixed (e.g., all RISC processors -- SPARC, MIPS, Alpha)

Variable (VAX, ...)

Hybrid

opcode          addr1    addr2   addr3

opcode+        spec1  addr1 spec2   addr2 specn   addrn ...
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The Customer is Always Right

• Compiler is primary customer of ISA
• Features the compiler doesn’t use are wasted
• Register allocation is a huge contributor to performance
• Compiler-writer’s job is made easier when ISA has

– regularity
– primitives, not solutions
– simple trade-offs

• Summary -> simplicity over power
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Our desired ISA

• Registers, Load-store
• Addressing modes

– immediate (8-16 bits)
– displacement (12-16 bits)
– register deferred (register indirect)

• Support a reasonable number of operations
• Don’t use condition codes
• Fixed instruction encoding/length for performance
• regularity (several general-purpose registers)
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MIPS instruction set architecture

• 32 32-bit general-purpose registers
– R0 always equals zero
– 32 or 16 FP registers

• 8-, 16-, and 32-bit integers, 32- and 64-bit fp data types
• immediate and displacement addressing modes

– register deferred is a subset of displacement

• 32-bit fixed-length instruction encoding
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MIPS Instruction Format
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RISC vs CISC

• MIPS is a classic RISC architectures (as are SPARC, Alpha, 
PowerPC, …)

• RISC stands for Reduced Instruction Set Computer.  RISC 
architectures are load-store, few formats, minimal 
instruction sets.

• They were in contrast to the 70s and 80s which 
proliferated CISC ISAs (VAX, Intel x86, various IBM), 
which were characterized by complex and comprehensive 
instruction sets, and complex instruction decoding.

• RISC architectures thrived not because they supported 
fewer operations, but because they enabled parallelism.
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MIPS Operations and ISA

• Read on your own!
• Get comfortable with MIPS instructions and formats
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A few sample instructions

lw R1, 1000(R2)

add R1, R2, R3

addi R1, R2, #53

jal label

jr R3

beq R1, R5, label
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MIPS R2000 vs. VAX 8700

Or “Why RISC?”

ET = IC * CPI * CT

ICMIPS = 2 ICVAX

CPIVAX = 6 CPIMIPS
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ISA Key Points

• Modern ISA’s typically sacrifice power and flexibility for 
regularity and simplicity;  code density for parallelism and 
throughput.

• instruction bits are extremely limited, particularly in a 
fixed-length instruction format.

• Registers are critical to performance – we want lots of 
them, and few strings attached.

• Displacement addressing mode handles the vast majority 
of memory reference needs.


