
CSE 240A Dean Tullsen

Pipeline Hazards

or
Danger!Danger!Danger!

CSE 240A Dean Tullsen

Data Hazards

ADD R1, R2, R3

SUB R4, R5, R1

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

Data ___________ may result in data ____________.

CSE 240A Dean Tullsen

Data Hazards

add R1, R2, R3

sub R4, R1, R6

and R6, R1, R2

or R8, R11, R1

xor R10, R1, R5

CSE 240A Dean Tullsen

Data Hazard
add R6, R3, R1 addi R3, R1, #35sub R7, R6, R3

CSE 240A Dean Tullsen

Data Dependence

•Data hazards are caused by data dependences

•Data dependences, and thus data hazards,
come in 3 flavors (not all of which apply to this
pipeline).
– (read-after-write)

– (write-after-write)

– (write-after-read)

CSE 240A Dean Tullsen

RAW Hazard

• later instruction tries to read an operand before earlier instruction
writes it

• The dependence

add R1, R2, R3

sub R5, R1, R4

• The hazard

add R1, R2, R3

sub R5, R1, R4

• RAW hazard is extremely common

IF ID EX MEM WB

IF ID EX MEM WB

CSE 240A Dean Tullsen

WAW Hazard

•later instruction tries to write an operand before earlier
instruction writes it

•The dependence
add R1, R2, R3
sub R1, R2, R4

•The hazard
lw R1, R2, R3
sub R1, R2, R4

•WAW hazard possible in a reasonable pipeline, but not
in the very simple pipeline we’re assuming.

IF ID EX MEM WB
IF ID EX MEM WB

MEM3MEM2

CSE 240A Dean Tullsen

WAR Hazard

• later instruction tries to write an operand before earlier instruction
reads it

• The dependence

add R1, R2, R3

sub R2, R5, R4

• The hazard?

add R1, R2, R3

sub R2, R5, R4

• WAR hazard is uncommon/impossible in a reasonable (in-order)
pipeline

IF ID EX MEM WB
IF ID EX MEM WB

CSE 240A Dean Tullsen

Solutions?

add R1, R2, R3

sub R4, R1, R6

and R6, R1, R2

or R8, R11, R1

xor R10, R1, R5

CSE 240A Dean Tullsen

Dealing with Data Hazards through
Forwarding

SUB R4, R1, R5 ADD R1, R2, R3AND R6, R4, R7

CSE 240A Dean Tullsen

Dealing with Data Hazards
through Forwarding

add R1, R2, R3

sub R4, R1, R6

and R6, R1, R2

or R8, R11, R1

xor R10, R1, R5

CSE 240A Dean Tullsen

Forwarding Options

•ADD -> ADD

•ADD -> LW

•ADD -> SW (2 operands)

•LW -> ADD

•LW -> LW

•LW -> SW (2 operands)

(I’m letting ADD stand in for all ALU operations)

CSE 240A Dean Tullsen

More Forwarding

CSE 240A Dean Tullsen

Forwarding in the Pipeline

•(Picture from undergrad text)

CSE 240A Dean Tullsen

More Forwarding

CSE 240A Dean Tullsen

Forwarding and Stalling

lw R1, 0(R2) IF ID EX WB ID

sub R4, R1, R6

and R6, R1, R7

or R8, R1, R9

CSE 240A Dean Tullsen

Example

ADD R1, R2, R3

SW R1, 1000(R2)

LW R7, 2000(R2)

ADD R5, R7, R1

LW R8, 2004(R2)

SW R7, 2008(R8)

ADD R8, R8, R2

LW R9, 1012(R8)

SW R9, 1016(R8)

CSE 240A Dean Tullsen

Avoiding Pipeline Stalls

lw R1, 1000(R2)

lw R3, 2000(R2)

add R4, R1, R3

lw R1, 3000(R2)

add R6, R4, R1

sw R6, 1000(R2)

•this is a compiler technique called instruction
scheduling.

CSE 240A Dean Tullsen

How big a problem are these
pipeline stalls?

•13% of the loads in FP programs

•25% of the loads in integer programs

CSE 240A Dean Tullsen

Detecting ALU Input Hazards

ID/EX EX/MEM MEM/WB

op
co

de
rd

rs
1

rd
op

co
de

op
co

de
rd

ALUrs
2

CSE 240A Dean Tullsen

Inserting Bubbles

•Set all control values in the EX/MEM register to safe
values (equivalent to a nop)

•Keep same values in the ID/EX register and IF/ID
register

•Keep PC from incrementing

CSE 240A Dean Tullsen

Adding Datapaths

CSE 240A Dean Tullsen

Control Hazards

•Result from branch or control ______________

•Instructions are not only dependent on instructions that
produce their operands, but also on all previous control
flow (branch, jump) instructions that lead to that
instruction.

add
add
bne
sub
and
beq

and
sub

branch taken

CSE 240A Dean Tullsen

Old Datapath

CSE 240A Dean Tullsen

Branch Hazards

Branch

I2

I3

I4

correct instruction

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

CSE 240A Dean Tullsen

Branch Stall Impact

•If CPI = 1, 30% branch, Stall 3 cycles => new CPI = ????

•Two part solution:
– Determine branch taken or not sooner, AND

– Compute taken branch address earlier

•(limited MIPS) branch tests if register = 0 or  0

•MIPS Solution:
– Move Zero test to ID/RF stage

– Adder to calculate new PC in ID/RF stage

– 1 clock cycle penalty for branch versus 3

CSE 240A Dean Tullsen

New Datapath

CSE 240A Dean Tullsen

Branch Hazards

Branch

I2

correct instruction

I4

I5

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

CSE 240A Dean Tullsen

What We Know About Branches

•more conditional branches than unconditional

•more forward than backward

•67% of branches taken

•backward branches taken 80%

CSE 240A Dean Tullsen

Four Branch Hazard Alternatives

•
•
•
•4 – delayed branch

CSE 240A Dean Tullsen

#1 _______ until branch
direction clear

•Problems?

CSE 240A Dean Tullsen

#2 Predict Branch Not Taken

•Execute successor instructions in sequence

•“Squash” instructions in pipeline if branch actually
taken

•Advantage of late pipeline state update

•33% MIPS branches not taken on average

•PC+4 already calculated, so use it to get next
instruction

•This is what the pipeline is doing, anyway

CSE 240A Dean Tullsen

#3 Predict Branch Taken

•67% MIPS branches taken on average
•But haven’t calculated branch target address in this

MIPS architecture
– MIPS still incurs 1 cycle branch penalty
– Other machines: branch target known before outcome

CSE 240A Dean Tullsen

Fourth Branch Hazard
Alternatives -- Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1sequential successor2........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target address in 5
stage pipeline

– MIPS uses this

Branch delay of length n

CSE 240A Dean Tullsen

Delayed Branch

•Where to get instructions to fill branch delay slot?
– Before branch instruction

– From the target address: only valuable when branch taken

– From fall through: only valuable when branch not taken

– Cancelling branches allow more slots to be filled

•Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots

– About 80% of instructions executed in branch delay slots useful
in computation

– About 50% (60% x 80%) of slots usefully filled

CSE 240A Dean Tullsen

Key Points

•Hard to keep the pipeline completely full

•Data Hazards require dependent instructions to wait for
the producer instruction
– Most of the problem handled with forwarding (bypassing)

– Sometimes stall still required (especially in modern
processors)

•Control hazards require control-dependent (post-
branch) instructions to wait for the branch to be
resolved

•ET = IC * CPI * CT

