
CSE 240A Dean Tullsen

Revisiting Branch Hazard Solutions

• Stall
• Predict Not Taken
• Predict Taken
• Branch Delay Slot

CSE 240A Dean Tullsen

Predict Not Taken

Branch

I+1

I+2

I+3

IF ID EX MEM WB

IF

(bubble)

EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Branch

I+1

Branch Target

T+1

IF ID EX MEM WB

IF

ID

IF ID EX MEM WB

IF ID EX MEM WB

(bubble) (bubble) (bubble)

CSE 240A Dean Tullsen

Delayed Branch

Branch

I+1 (delay slot)

I+2

I+3

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Branch

I+1 (delay slot)

Branch Target

T+1

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

CSE 240A Dean Tullsen

Filling the delay slot (e.g., in the
compiler)

Can be done when?
Improves performance when?

lw R1, 10000(R7)
add R5, R6, R1
beqz R5, label:

sub R8, R1, R3
add R4, R8, R9
and R2, R4, R8

add R2, R5, R8label:

CSE 240A Dean Tullsen

Problems filling delay slot

1. need to predict __________ of branch to be most effective
2. limited by ______________ restriction

• ____________ restriction can be removed by a canceling
branch

branch likely (or branch not likely???)
e.g.,

beqz likely
delay slot instruction
fall-through instruction

squashed/nullified/canceled if branch not taken

CSE 240A Dean Tullsen

Branch Likely

Branch likely

I+1 (delay slot)

I+2

I+3

IF ID EX MEM WB

IF (bubble)

IF ID EX MEM WB

IF ID EX MEM WB

Branch likely

I+1 (delay slot)

Branch Target

T+1

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

(bubble)(bubble)(bubble)

CSE 240A Dean Tullsen

Delay Slot Utilization

• 18% of delay slots left empty
• 11% of delay slots (1) use canceling branches and (2) end

up getting canceled

CSE 240A Dean Tullsen

Branch Performance

CPI = BCPI + pipeline stalls from branches per instruction
= 1.0 + branch frequency * branch penalty

assume 20% branches, 67% taken:

branch taken not taken
scheme penalty penalty CPI
stall
predict taken
predict not taken
delayed branch

CSE 240A Dean Tullsen

Delay Slots, the scorecard

• Pros

• Cons

CSE 240A Dean Tullsen

Static Branch Prediction

• Static branch prediction takes place at compile time, dynamic branch
prediction during program execution

• static bp done by software, dynamic bp done in hardware
• How to make static branch predictions?
• Static branch prediction enables

– more effective code scheduling around hazards (how?)
– more effective use of delay slots

Misprediction rate

0%

25%

5%

10%

20%

15%

Benchmark

com
pre

ss
eqn

tot
t

esp
res

so gcc li
do

du
c ear

hy
dro

2d
mdlj

dp
su2

cor

12%

22%

18%

11%
12%

5% 6%

9% 10%

15%

CSE 240A Dean Tullsen

MIPS Integer Pipeline Performance

• Only stalls for load hazards and branch hazards, both of
which can be reduced (but not eliminated) by software

Percentage of all instructions that stall

0%

2%

4%

6%

8%

10%

12%

14%

5%

7%

3%

9%

14%

4%
5%

4%
5%

7%

Load stallsBranch stalls

Benchmark

com
pre

ss
eqn

tot
t

esp
res

so gcc li

CSE 240A Dean Tullsen

But now, the real world interrupts...

• Pipelining is not as easy as we have made it seem so far...
– interrupts and exceptions
– long-latency instructions

CSE 240A Dean Tullsen

Exceptions and Interrupts

• Transfer of control flow (to an exception handler) without an explicit
branch or jump

• are often unpredictable
• examples

– I/O device request
– OS system call
– arithmetic overflow/underflow
– FP error
– page fault
– memory-protection violation
– hardware error
– undefined instruction

CSE 240A Dean Tullsen

Classes of Exceptions

• synchronous vs. asynchronous
• user-initiated vs. coerced
• user maskable vs. nonmaskable
• within instruction vs. between instructions
• resume vs. terminate

when the pipeline can be stopped just before the faulting
instruction, and can be restarted from there (if necessary),
the pipeline supports precise exceptions

CSE 240A Dean Tullsen

Basic Exception Methodology

• turn off writes for faulting instruction and following
• force a trap into the pipeline at the next IF
• save the PC of the faulting instruction (not quite enough

for delayed branches)

CSE 240A Dean Tullsen

Exceptions Can Occur In Several
Places in the pipeline

• IF -- page fault on memory access, misaligned memory
access, memory-protection violation

• ID -- illegal opcode
• EX -- arithmetic exception
• MEM -- page fault, misaligned access, memory-protection
• WB -- none
(and, of course, asynchronous can happen anytime)

IF ID EX MEM WB
IF ID EX MEM WB

IF ID EX MEM WB

LW
ADD
SUB

CSE 240A Dean Tullsen

Simplifying Exceptions in the ISA

1. Each instruction changes machine state only once
1. autoincrement
2. string operations
3. condition codes

2. Each instruction changes machine state at the end of the
pipeline (when you know it will not cause an exception)

CSE 240A Dean Tullsen

Handling Multicycle Operations

• Unrealistic to expect that all operations take the same
amount of time to execute

• ___, some _______________will take longer
• This violates some of the assumptions of our simple

pipeline

CSE 240A Dean Tullsen

Multiple Execution Pipelines

FU Latency Initiation interval
Integer 0 1
Memory 1 1
FP add 3 1
FP multiply 6 1
FP divide 24 24

EX

M1

FP/integer multiply

Integer unit

FP adder

DIV

FP/integer divider

IF ID MEM WB

M2 M3 M4 M5 M6

A1 A2 A3 A4

M7

CSE 240A Dean Tullsen

New problems

• structural hazards
– divide unit
– WB stage

• WAW hazards are possible
• out-of-order completion
• WAR hazards still not possible

CSE 240A Dean Tullsen

structural hazards and WAW hazards

• structural hazards
– divide unit
– WB stage

• WAW hazards

ADDD IF ID A1 A2 A3 A4 MEM WB
... IF ID EX MEM WB
... IF ID EX MEM WB
LD IF ID EX MEM WB

ADDD F8, ... IF ID A1 A2 A3 A4 MEM WB
LD F8, ... IF ID EX MEM WB

CSE 240A Dean Tullsen

Hazard Detection in the ID stage

• An instruction can only issue (proceed past the ID stage)
when:
– there are no structural hazards (divide unit is free, WB port will be

free when needed)
– no RAW data hazards (that forwarding can’t handle)
– no WAW hazards with instructions in long pipes

CSE 240A Dean Tullsen

Key Points

• Data Hazards can be significantly reduced by forwarding
• Branch hazards can be reduced by early computation of

condition and target, branch delay slots, branch prediction
• Data hazard and branch hazard reduction require complex

compiler support
• Exceptions are hard, precise exceptions are really hard
• variable-length instructions introduce structural hazards,

WAW hazards, more RAW hazards

