
CSE 240A Dean Tullsen

Branch Prediction

or
sometimes you just have to guess

CSE 240A Dean Tullsen

Looking for Instruction Level
Parallelism (ILP)

• We want to identify and exploit ILP – instructions that can
potentially be executed at the same time.

• Branches are 15-20% of instructions
– Implications?





• Can only keep the pipeline full if we can consistently keep
fetching well past unresolved branches.

• Can only exploit high levels of parallelism if we
consistently have multiple basic blocks in the processor at
once.

CSE 240A Dean Tullsen

Importance of Branch Prediction

• MIPS R2000 -- branch hazard of 1 cycle, 1 instruction
issued per cycle
– delayed branch

• next generation – 2-3 cycle hazard, 1-2 instructions issued
per cycle
– cost of branch misprediction goes up

• Pentium 4

CSE 240A Dean Tullsen

Branch Prediction

• Easiest (static prediction)
– always not taken, always taken
– forward not taken, backward always taken
– compiler predicted (branch likely, branch not likely)

• Next easiest (1-bit dynamic)
– remember last taken/not taken per branch (1 bit)
– per branch approximated

 per I cache line
 use part of address

– what happens on a loop?

for (I=0;I<5;I++) { loop: …
… …
} bnez r1, loop:

CSE 240A Dean Tullsen

2-bit branch prediction

• has 4 states instead of 2, allowing for more information
about tendencies.

• Loops?

CSE 240A Dean Tullsen

Two different 2-bit schemes

Strongly Taken
11

Weakly Taken
10

Weakly Not Taken
01

Strongly Not Taken
00

De
cr

em
en

t w
he

n
no

t t
ak

en

In
cr

em
en

t w
he

n
ta

ke
n

CSE 240A Dean Tullsen

Branch History Table

• has limited size
• 2 bits by N (e.g. 4K)
• uses low bits of branch address to choose entry

• what happens when table too small?
• what about even/odd branch?

branch address

00

BHT

CSE 240A Dean Tullsen

2-bit prediction accuracy

Is this good enough?

CSE 240A Dean Tullsen

Can We Do Better?

• Can we get more information dynamically than just the
general history of this branch?

• We can look at patterns (local predictor) for a particular
branch.
– last eight branches 00100100, then it is a good guess that the next

one is “1” (taken)

• even/odd branch?

000000
111111
001001
000000

address BHT
00
00

11
CSE 240A Dean Tullsen

Illustrating branch predictors
(this will waste some paper, but might be

handy as a reference to have the full
animation)

CSE 240A Dean Tullsen

1-bit BHT

1
0
1

program counter

for (i=0;i<10;i++) {
...
...
}

...

...
subi $i, $i, #1
bnez $i, loop

1st iteration
Branch Taken
(predicted not taken)
History -> 1

CSE 240A Dean Tullsen

1-bit BHT

1
1
1

program counter

2nd iteration
Branch Taken
(predicted taken)
History -> 1

for (i=0;i<10;i++) {
...
...
}

...

...
subi $i, $i, #1
bnez $i, loop

CSE 240A Dean Tullsen

1-bit BHT

1
1
1

program counter

3rd iteration
Branch Taken
(predicted taken)
History -> 1

for (i=0;i<10;i++) {
...
...
}

...

...
subi $i, $i, #1
bnez $i, loop

CSE 240A Dean Tullsen

1-bit BHT

1
1
1

program counter

10th iteration
Branch Not Taken
(predicted taken)
History -> 0

for (i=0;i<10;i++) {
...
...
}

...

...
subi $i, $i, #1
bnez $i, loop

CSE 240A Dean Tullsen

1-bit BHT

1
0
1

program counter

1st iteration again
Branch Taken
(predicted not taken)
History -> 1

for (i=0;i<10;i++) {
...
...
}

...

...
subi $i, $i, #1
bnez $i, loop

CSE 240A Dean Tullsen

2-bit Branch History Table

branch address

01

BHT

1st iteration
Branch Taken
(predicted not taken)
History -> ?

CSE 240A Dean Tullsen

2-bit Branch History Table

branch address

10

BHT

2nd iteration
Branch Taken
(predicted taken)
History -> ?

CSE 240A Dean Tullsen

2-bit Branch History Table

branch address

11

BHT

3rd iteration
Branch Taken
(predicted taken)
History -> ?

CSE 240A Dean Tullsen

2-bit Branch History Table

branch address

11

BHT

10th iteration
Branch Not Taken
(predicted taken)
History -> ?

CSE 240A Dean Tullsen

2-bit Branch History Table

branch address

10

BHT

1st iteration again
Branch Taken
(predicted taken)
History -> ?

CSE 240A Dean Tullsen

Local predictor

000000
111111
011011
000000

address BHT
00

01

11

Pattern
History
Table

Assume a loop that repeatedly executes three iterations (thus, the
branch is TTNTTNTTN…

First iteration
Branch Taken
Predicted not taken
BHT -> 10
Pattern Hist Table -> 101101

01
Entry
011011

101101

110110

01

01

CSE 240A Dean Tullsen

Local predictor

000000
111111
101101
000000

address BHT
00

10

11

Pattern
History
Table

Assume a loop that repeatedly executes three iterations (thus, the
branch is TTNTTNTTN…

Second iteration
Branch Taken
Predicted not taken
BHT -> 10
Pattern Hist Table -> 110110

01
Entry
011011

101101

110110

01

01

CSE 240A Dean Tullsen

Local predictor

000000
111111
110110
000000

address BHT
00

10

11

Pattern
History
Table

Assume a loop that repeatedly executes three iterations (thus, the
branch is TTNTTNTTN…

Third iteration
Branch not taken
Predicted not taken
BHT -> 00
Pattern Hist Table -> 011011

01
Entry
011011

101101

110110

10

01

CSE 240A Dean Tullsen

Local predictor

000000
111111
011011
000000

address BHT
00

10

11

Pattern
History
Table

Assume a loop that repeatedly executes three iterations (thus, the
branch is TTNTTNTTN…

First iteration, again
Branch taken
Predicted taken
BHT -> 11
Pattern Hist Table -> 101101

01
Entry
011011

101101

110110

10

00

CSE 240A Dean Tullsen

Local predictor

000000
111111
101101
000000

address BHT
00

11

11

Pattern
History
Table

Assume a loop that repeatedly executes three iterations (thus, the
branch is TTNTTNTTN…

Second iteration, again
Branch taken
Predicted taken
BHT -> 11
Pattern Hist Table -> 110110

01
Entry
011011

101101

110110

10

00

CSE 240A Dean Tullsen

Local predictor

000000
111111
110110
000000

address BHT
00

11

11

Pattern
History
Table

Assume a loop that repeatedly executes three iterations (thus, the
branch is TTNTTNTTN…

Third iteration, again
Branch not taken
Predicted not taken
BHT -> 00
Pattern Hist Table -> 011011

01
Entry
011011

101101

110110

11

00

CSE 240A Dean Tullsen

Local predictor

000000
111111
011011
000000

address BHT
00

11

11

Pattern
History
Table

Assume a loop that repeatedly executes three iterations (thus, the
branch is TTNTTNTTN…

First iteration, yet again
Branch taken
Predicted taken
BHT -> 11
Pattern Hist Table -> 101101

01
Entry
011011

101101

110110

11

00

CSE 240A Dean Tullsen

Can We Do Better?

• Correlating Branch Predictors also look at other branches
for clues

if (i == 0)
...

if (i > 7)
...

• Typically use two indexes
– Global history register (GHR) --> history of last m branches (e.g.,

0100011)
– branch address

CSE 240A Dean Tullsen

Correlating Branch Predictors

• The global history register is a shift register that records
the last n branches (of any address) encountered by the
processor.

ghr

2-bit predictors

00
01

11

00

BHT

CSE 240A Dean Tullsen

Yeh and Patt

Alternative Implementations of Two
Level Adaptive Branch Prediction

CSE 240A Dean Tullsen

Yeh and Patt

• Described and evaluated some of these same predictors,
although their terminology didn’t stick.

000000
111111
011011
000000

address BHT
00

01

11

Pattern
History
Table

01
Entry
011011

101101

110110

01

01

ghr

2-bit predictors

00
01

11

00

BHT

Local Predictor == PAg Local Predictor == GAg

CSE 240A Dean Tullsen

Yeh and Patt

• What conclusions do they come to?

• What other conclusions/results are interesting?

• How do you handle context switches?

CSE 240A Dean Tullsen

Two-level correlating branch predictors

• Can use both the PC address and the GHR

• If the combining function is xor, this is called the _________ predictor.

ghr

2-bit predictors

00
01

11

00
PC

combining
function

BHT

CSE 240A Dean Tullsen

Performance of 2-level Correlating
Branch Prediction

CSE 240A Dean Tullsen

Are we happy yet????

• Combining branch predictors or tournament predictors
use multiple schemes and a voter to decide which one
typically does better for that branch.

PC

P1 P2

use P2

CSE 240A Dean Tullsen

More BP performance

CSE 240A Dean Tullsen

But...

• When do we need to do the prediction to avoid any control
hazards on a correct prediction?

• A taken/not taken prediction only helps us if....?
–
–

CSE 240A Dean Tullsen

Branch Target Buffers

• predict the location of branches in the instruction stream
• predict the destination of branches

CSE 240A Dean Tullsen

BTB Operation

• use PC (all bits) for lookup
– match implies this is a branch

• if match and predict bits => taken, set PC to predicted PC
• if branch predict wrong, must recover (same as branch hazards we’ve

already seen)
– but what about dynamically scheduled (out of order) processor??

• if decode indicates branch when no BTB match, two choices:
– look up prediction now and act on it
– just predict not taken

• when branch resolved, update BTB (at least prediction bits, maybe
more)

CSE 240A Dean Tullsen

BTB Performance

• Two things that can go wrong
– didn’t predict the presence of branch (misfetch)
– mispredicted a branch (mispredict)

• Suppose BTB hit rate of 85% and predict accuracy of 90%,
misfetch penalty of 2 cycles and mispredict penalty of 10
cycles, what is average branch penalty?

• Can use both BTB and branch predictor
– have no prediction bits in BTB (why is that a good idea?)
– presence of PC in BTB indicates a lookup in branch predictor to

predict whether the branch will go to destination address in BTB.

CSE 240A Dean Tullsen

What about indirect jumps/returns?

• Branch predictor does really well with conditional jumps
• BTB does really well with unconditional jumps (jump, jal,

etc.)
• Indirect jumps often jump to different destinations, even

from the same instruction. Indirect jumps most often used
for return instructions. Sometimes used for case.

• Return easily handled by a stack.
– jal -> push PC+4
– return -> predict jump to address on top of stack, pop stack

CSE 240A Dean Tullsen

Real BP -- PowerPC 620

• 256-entry 2-way set-associative BTB
• 2048-entry BHT indexed by PC
• return-address stack

CSE 240A Dean Tullsen

Power 4

• Up to 2 branches per cycle predicted

PC GHR*

*GHR composed of 1 bit per fetch group

16K 16K 16K

XOR

BHT gshare chooser (use bht or gshare result?)
CSE 240A Dean Tullsen

Pentium Pro

• 512-entry BTB 4-way set-associative
• 2-level predictor (1st level in BTB, one per set, 4 bits)
• return stack

branch PC target branch PC target
branch
pattern BHT

CSE 240A Dean Tullsen

Compaq/Digital Alpha 21264

PC
10 3 2 2GHR

12

Local Predictor
Global
Predictor

Chooser

Branch Prediction

• next-cache-line field
in I-cache replaces
BTB

• return address stack

10

CSE 240A Dean Tullsen

The YAGS Branch Prediction Scheme
A. N. Eden and T. Mudge,

• What’s the big problem they are trying to solve

• What does aliasing do to the predictor?

• What are some general techniques to reduce the impact of
aliasing?

CSE 240A Dean Tullsen

Aliasing

• Constructive
• Neutral
• Destructive

• How does the two-level local predictor do wrt aliasing?
• 21264 tournament predictor?

CSE 240A Dean Tullsen

CSE 240A Dean Tullsen CSE 240A Dean Tullsen

CSE 240A Dean Tullsen

Branch Prediction Key Points

• The better we predict, the behinder we get.
• 2-bit predictors capture tendencies well.
• Correlating predictors improve accuracy, particularly when

combined with 2-bit predictors.
• Accurate branch prediction does no good if we don’t know

there was a branch to predict
• BTB identifies branches in (or before) IF stage.
• BTB combined with branch prediction table identifies

branches to predict, and predicts them well.
• Modern codes can create significant aliasing in branch

predictor tables.

