
CSE 240A Dean Tullsen

Instruction Level Parallelism (ILP)

or
Declaration of Independence

CSE 240A Dean Tullsen

What is ILP?

• The characteristic of a program that certain instructions are
independent, and can potentially be executed in parallel.

• Any mechanism that creates, identifies, or exploits the
independence of instructions, allowing them to be executed
in parallel.

• Why do we want/need ILP?
– In a superscalar architecture?
– What about a scalar architecture?

CSE 240A Dean Tullsen

Where do we find ILP?

• In basic blocks?
– 15-20% of (dynamic) instructions are branches in typical code

• Across basic blocks?
– how?

for (i=1; i<=1000; i++)
x[i] = x[i] * s

CSE 240A Dean Tullsen

How do we expose ILP?

• by moving instructions around.
• How??

– software
– hardware

CSE 240A Dean Tullsen

Exposing ILP in software

• instruction scheduling (changes ILP within a basic block)
• loop unrolling (allows ILP across iterations by putting

instructions from multiple iterations in the same basic
block)

• Others (trace scheduling, software pipelining) we’ll talk
about later…

CSE 240A Dean Tullsen

A sample loop

Loop: LD F0,0(R1) ;F0=array element, R1=X[]
MULD F4,F0,F2 ;multiply scalar in F2
SD F4, 0(R1) ;store result
ADDI R1,R1,8 ;increment pointer 8B (DW)
SEQ R3, R1, R2 ;R2 = &X[1001]
BNEZ R3,Loop ;branch R3!=zero
NOP ;delayed branch slot

Operation Latency (stalls)
FP Mult 6 (5)
LD 2 (1)
Int ALU 1 (0)

Where are the
dependencies and
stalls?

CSE 240A Dean Tullsen

Instruction Scheduling

Loop: LD F0,0(R1)
MULD F4,F0,F2
SD 0(R1),F4
ADDI R1,R1,8
SEQ R3, R1, R2
BNEZ R3,Loop
NOP

Loop: LD F0,0(R1)
ADDI R1,R1,8
MULD F4,F0,F2
SEQ R3, R1, R2
BNEZ R3,Loop
SD -8(R1),F4

CSE 240A Dean Tullsen

Loop Unrolling

Loop: LD F0,0(R1)
ADDI R1,R1,8
MULD F4,F0,F2
SEQ R3, R1, R2
BNEZ R3,Loop
SD -8(R1),F4

Loop: LD F0,0(R1)
ADDI R1,R1,8
MULD F4,F0,F2
SEQ R3, R1, R2
BNEZ R3,Loop
SD -8(R1),F4
LD F0,0(R1)
ADDI R1,R1,8
MULD F4,F0,F2
SEQ R3, R1, R2
BNEZ R3,Loop
SD -8(R1),F4

CSE 240A Dean Tullsen

Loop Unrolling

Loop: LD F0,0(R1)
ADDI R1,R1,8
MULD F4,F0,F2
SEQ R3, R1, R2
BNEZ R3,Loop
SD -8(R1),F4

Loop: LD F0,0(R1)
ADDI R1,R1,8
MULD F4,F0,F2
SEQ R3, R1, R2
BNEZ R3,Loop
SD -8(R1),F4
LD F0,0(R1)
ADDI R1,R1,8
MULD F4,F0,F2
SEQ R3, R1, R2
BNEZ R3,Loop
SD -8(R1),F4

CSE 240A Dean Tullsen

Loop Unrolling

Loop: LD F0,0(R1)
ADDI R1,R1,8
MULD F4,F0,F2
SEQ R3, R1, R2
BNEZ R3,Loop
SD -8(R1),F4

Loop: LD F0,0(R1)
MULD F4,F0,F2
SD 0(R1),F4
LD F0,8(R1)
ADDI R1,R1,16
MULD F4,F0,F2
SEQ R3, R1, R2
BNEZ R3,Loop
SD -8(R1),F4

CSE 240A Dean Tullsen

Register Renaming

Loop: LD F0,0(R1)
ADDI R1,R1,8
MULD F4,F0,F2
SEQ R3, R1, R2
BNEZ R3,Loop
SD -8(R1),F4

Loop: LD F0,0(R1)
MULD F4,F0,F2
SD 0(R1),F4
LD F10,8(R1)
ADDI R1,R1,16
MULD F14,F10,F2
SEQ R3, R1, R2
BNEZ R3,Loop
SD -8(R1),F14

CSE 240A Dean Tullsen

Register Renaming

Loop: LD F0,0(R1)
ADDI R1,R1,8
MULD F4,F0,F2
SEQ R3, R1, R2
BNEZ R3,Loop
SD -8(R1),F4

Loop: LD F0,0(R1)
LD F10,8(R1)
MULD F4,F0,F2
MULD F14,F10,F2
ADDI R1,R1,16
SEQ R3, R1, R2
SD 0(R1),F4
BNEZ R3,Loop
SD -8(R1),F14

CSE 240A Dean Tullsen

Compiler Perspectives on
Code Movement

• Remember: dependencies are a property of code, whether or
not it is a HW hazard depends on the given pipeline.

• Compiler must respect (True) Data dependencies (RAW)
– Easy to determine for registers (fixed names)
– Hard for memory:

 Does 100(R4) = 20(R6)?
 From different loop iterations, does 20(R6) = 20(R6)?

• False dependences (WAR and WAW) can sometimes be overcome.

CSE 240A Dean Tullsen

Compiler Perspectives on
Code Movement

• Compilers must also preserve control dependence
• Example

if (c1)
I1;

if (c2)
I2;

I1 is control dependent on c1 and I2 is control dependent on c2
but not on c1.

CSE 240A Dean Tullsen

Compiler Perspectives on
Code Movement

• Two (obvious) constraints on control dependences:
– An instruction that is control dependent on a branch cannot be moved

before the branch so that its execution is no longer controlled by the branch.

– An instruction that is not control dependent on a branch cannot be moved to
after the branch so that its execution is controlled by the branch.

• Control dependencies relaxed to get parallelism; as long as we get
same effect if preserve order of exceptions and data flow

CSE 240A Dean Tullsen

Code Motion

• Can be done in SW or HW
• Why SW?
• Why HW?

• Also, like software, we’d like the following capabilities in
our hardware code motion.
– Ability to move instructions across branches
– Ability to overcome (or ignore) false dependences
– Both easier in hardware

CSE 240A Dean Tullsen

HW Schemes: Instruction Parallelism

• Why in HW at run time?
– Works when can’t know dependence until run time

 Variable latency
 Control dependent data dependence

– Can schedule differently every time through the code.
– Compiler simpler
– Code for one machine runs well on another

• Key idea: Allow instructions behind stall to proceed
DIVD F0,F2,F4
ADDD F10,F0,F8
SUBD F12,F8,F14

– Enables out-of-order execution => out-of-order completion

CSE 240A Dean Tullsen

First HW ILP Technique:
Out-of-order Issue/Dynamic Scheduling

• Problem -- need to get stalled instructions out of the ID
stage, so that subsequent instructions can begin execution.

• Must separate detection of structural hazards from
detection of data hazards

• Must split ID operation into two:
– Issue (decode, check for structural hazards)
– Read operands (read operands when NO DATA HAZARDS)
– Otherwise, one stalled (for data) instruction would cause all others

to back up behind the ID stage.
• i.e., must be able to issue even when a data hazard exists
• instructions issue in-order, but proceed to EX out-of-order

CSE 240A Dean Tullsen

Dynamic Scheduling by hand

in-order out-of-order
DIVD F0,F2,F4 (10 cycles)
ADDD F10, F0, F8 (4 cycles)
SUBD F12, F8, F14 (4 cycles)
ADDD F20,F2,F3
MULTD F13,F12,F2 (6 cycles)
ADDD F4,F1,F3
ADDD F5,F4,F13

(assume several FP ADD units)

CSE 240A Dean Tullsen

Key Points

• You can find, create, and exploit Instruction Level Parallelism in
SW or HW

• Loop level parallelism is usually easiest to see
• Dependencies exist in a program, and become hazards if HW

cannot resolve
• SW dependencies/compiler sophistication determine if compiler

can/should unroll loops
• SW code motion is limited by lack of runtime knowledge of

dependencies (esp. memory), latencies (esp. memory), and
control flow.

