
CSE 240A Dean Tullsen

ILP in real code

• Based on all kinds of ideal
assumptions. Further limited
by:
– realistic branch prediction
– finite renaming registers
– imperfect alias analysis for

memory operations

CSE 240A Dean Tullsen

Window Size

CSE 240A Dean Tullsen

Renaming Registers

CSE 240A Dean Tullsen

Memory Aliasing

CSE 240A Dean Tullsen

Exposing More ILP

• These techniques were originally motivated by VLIW,
which needs tons of ILP to work at all – but useful for
superscalar/dynamic/speculative processors, as well.

• Software Techniques
– Software Pipelining
– Trace Scheduling

• Hardware/Software Technique
– Predicated execution
– Simultaneous Multithreading

CSE 240A Dean Tullsen

Compiler support for ILP: Software
Pipelining

• Observation: if iterations from loops are independent, then can get
ILP by taking instructions from different iterations

• Software pipelining: reorganizes loops so that each iteration is
made from instructions chosen from different iterations of the
original loop

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration

CSE 240A Dean Tullsen

SW Pipelining Example

Unrolled 3 times
1 LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4
4 LD F6,-8(R1)
5 ADDD F8,F6,F2
6 SD -8(R1),F8
7 LD F10,-16(R1)
8 ADDD F12,F10,F2
9 SD -16(R1),F12
10 SUBI R1,R1,#24
11 BNEZ R1,LOOP

Software Pipelined
LD F0,0(R1)
ADDD F4,F0,F2
LD F0,-8(R1)

1LP:SD 0(R1),F4; Stores M[i]
2 ADDD F4,F0,F2; Adds to M[i-1]
3 LD F0,-16(R1); loads M[i-2]
4 SUBI R1,R1,#8
5 BNEZ R1,LP

SD 0(R1),F4
ADDD F4,F0,F2
SD -8(R1),F4

CSE 240A Dean Tullsen

Compiler Support for ILP:
Trace Scheduling

• Creates long basic blocks by finding long paths in the code

CSE 240A Dean Tullsen

Trace Scheduling

• Parallelism across IF branches vs. LOOP branches
• Two steps:

– Trace Selection
 Find likely sequence of basic blocks (trace) of (statically predicted) long

sequence of straight-line code
– Trace Compaction

 Squeeze trace into few VLIW instructions
 Need bookkeeping code in case prediction is wrong

CSE 240A Dean Tullsen

HW Support for More ILP

• Predication – Trading off branch hazards and control flow
constraints for increased instruction bandwidth

• Case Studies
• Simultaneous Multithreading – Transforming thread level

parallelism (TLP) into ILP

CSE 240A Dean Tullsen

Predication: HW support for More ILP

• Avoid branch prediction by turning branches into
conditionally executed instructions: (aka predicated
instructions)
add c, a, b (x) => if (x) then a = b + c else NOP
– If false, then neither store result nor cause exception
– Expanded ISA of Alpha, MIPS, PowerPC, SPARC have

conditional move; PA-RISC can annul any following instr, IA64
can predicate any instruction (even have multiple predicates)

ld F2, 0(R2)
addd F4, F2, F0
multd F6, F4, F4
beqz R3, go_on
addd F10, F0, F8
addi R2, R2, #8

go_on: addi R2, R2, #8
bnez F6, loop CSE 240A Dean Tullsen

Predicated Execution

• Drawbacks to conditional instructions
– Still takes a clock & alu even if “annulled”
– Stall if condition evaluated late
– Complex conditions reduce effectiveness;

condition becomes known late in pipeline
– requires more operands! Typically only available as conditional

move.
• Advantages

– eliminate prediction, misprediction
– longer basic blocks, ...

• Critical technology for VLIW, sw pipelining. Why?

CSE 240A Dean Tullsen

Pentium Pro (II, III, etc.)
microarchitecture

• 40 uncommitted instructions
• 20 unissued instructions

CSE 240A Dean Tullsen

Pentium 4 microarchitecture

CSE 240A Dean Tullsen

Pentium 4 front-end

CSE 240A Dean Tullsen

Pentium 4 back-end

• 126 in-flight instructions (ROB size)

CSE 240A Dean Tullsen

Pentium 4 Summary

• 20-stage pipeline
• IA32 (x86) ISA translated to RISC-like uops
• Uops stored in trace cache
• Decode/retire 3 uops/cycle
• Execute 6 uops/cycle
• Dynamically scheduled
• Explicit Register Renaming
• Simultaneous Multithreading (hyper-threading)

CSE 240A Dean Tullsen

Intel Nehalem (Core I7)

Figure 3.41 The Intel Core i7 pipeline structure shown with the memory system components. The total pipeline depth is 14
stages, with branch mispredictions costing 17 cycles. There are 48 load and 32 store buffers. The six independent functional units
can each begin execution of a ready micro-op in the same cycle.

CSE 240A Dean Tullsen

ILP Summary

• Parallelism is absolutely critical to modern computer
system performance, but at a very fine level.

• Mechanisms that create, or expose parallelism: loop
unrolling, software pipelining, code motion

• Mechanisms that allow the machine to exploit ILP:
pipelining, superscalar, dynamic scheduling, speculative
execution

CSE 240A Dean Tullsen

Simultaneous Multithreading

Tullsen, Eggers, Levy, Simultaneous Multithreading: Maximizing On-Chip
Parallelism, ISCA, 1995

Tullsen, Eggers, Emer, Levy, Lo, Stamm, Exploiting Choice: Instruction Fetch
and Issue on an Implementable Simultaneous Multithreading Processor, ISCA,

1996

CSE 240A Dean Tullsen

Motivation

• Modern processors fail to utilize execution resources well.
• There is no single culprit.
• Attacking the problems one at a time (e.g., specific latency-tolerance

solutions) always has limited effectiveness.
• However, a general latency-tolerance solution which can hide all

sources of latency can have a large impact on performance.

CSE 240A Dean Tullsen

Hardware Multithreading

Conventional
Processor

Multithreaded
Processor

PC

regs
PC

regs
PC

regs

PC

regs
PC

regs

CPU CPU

in
str

uc
tio

n
str

ea
m

in
str

uc
tio

n
str

ea
m

CSE 240A Dean Tullsen

Superscalar Execution

Issue Slots

Ti
m

e
(p

ro
c

cy
cl

es
)

CSE 240A Dean Tullsen

Superscalar Execution
with Fine-Grain Multithreading

Issue Slots

Ti
m

e
(p

ro
c

cy
cl

es
)

Thread 1

Thread 2

Thread 3

CSE 240A Dean Tullsen

Simultaneous Multithreading

Issue Slots

Ti
m

e
(p

ro
c

cy
cl

es
)

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

CSE 240A Dean Tullsen

The Potential for SMT

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

Number of Threads

Th
ro

ug
hp

ut
 (I

ns
tru

ct
io

ns
 p

er
 C

yc
le

)

Simultaneous Multithreading

Fine-Grain Multithreading

Conventional Superscalar

CSE 240A Dean Tullsen

Goals

We had three primary goals for this architecture:

1. Minimize the architectural impact on conventional superscalar design.

2. Minimize the performance impact on a single thread.

3. Achieve significant throughput gains with many threads.

CSE 240A Dean Tullsen

A Conventional Superscalar Architecture

Instruction Cache

8

Decode Register
Renaming

floating point
instruction queue

integer
instruction queue

fp
units

int.
units

PC
Fetch
Unit

int/ld-
store
units

Data
Cache

integer
reg’s

fp
reg’s

• Fetch up to 8
instructions per cycle

• Issue 3 floating
point, 6 integer
instructions per cycle

• Out-of-order,
speculative
execution

CSE 240A Dean Tullsen

An SMT Architecture

Instruction Cache

8

Decode Register
Renaming

floating point
instruction queue

integer
instruction queue

fp
units

int.
units

Fetch
Unit

int/ld-
store
units

Data
Cache

integer
reg’s

fp
reg’s

• Fetch up to 8
instructions per cycle

• Issue 3 floating
point, 6 integer
instructions per cycle

• Out-of-order,
speculative
execution

PC

CSE 240A Dean Tullsen

Performance of the Naïve Design

1

2

3

4

5

2 4 6 8
Number of Threads

Unmodified Superscalar

Th
ro

ug
hp

ut
 (I

ns
tru

ct
io

ns
 P

er
 C

yc
le

)

CSE 240A Dean Tullsen

Bottlenecks of the Baseline
Architecture

• Instruction queue full conditions (12-21% of cycles)
– Lack of parallelism in the queue.

• Fetch throughput (4.2 instructions per cycle when queue not full)

CSE 240A Dean Tullsen

Improving Fetch Throughput

• The fetch unit in an SMT architecture has two distinct
advantages over a conventional architecture.

1. Can fetch from multiple threads at once.
2. Can choose which threads to fetch.

CSE 240A Dean Tullsen

Improved Fetch Performance

• Fetching from 2 threads/cycle achieved most of the
performance from multiple-thread fetch.

• Fetching from the thread(s) which have the fewest
unissued instructions in-flight significantly increases
parallelism and throughput.

CSE 240A Dean Tullsen

Improved Performance

1

2

3

4

5

2 4 6 8
Number of Threads

Improved

Baseline

Unmodified superscalar

In
str

uc
tio

ns
 p

er
 c

yc
le

CSE 240A Dean Tullsen

This SMT Architecture, then:

• Borrows heavily from conventional superscalar design.
• Minimizes the impact on single-thread performance
• Achieves significant throughput gains over the superscalar

(2.5X, up to 5.4 IPC).

CSE 240A Dean Tullsen

Commercial SMT

• Alpha 21464 ()
• Intel Pentium 4 “hyper-threading” processor.
• IBM Power 5 – 2 cores, 2 SMT threads/core
• IBM Power 6 – again, 2 cores, 2 SMT threads/core
• IBM Power 7 – 8 cores, 4 SMT threads/core
• Sun Niagara T1 (2006) – 8 cores, 4 threads/core (SMT?)
• Sun Niagara T2 – 8 cores, 8 threads/core
• Intel Nehalem (core i7) 4-8 cores, 2 SMT threads/core

