ILP in real code
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Exposing More ILP

® These techniques were originally motivated by VLIW,
which needs tons of ILP to work at all — but useful for
superscalar/dynamic/speculative processors, as well.

¢ Software Techniques
— Software Pipelining
— Trace Scheduling

® Hardware/Software Technique
— Predicated execution
— Simultaneous Multithreading
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Compiler support for ILP: Software
Pipelining

® Observation: if iterations from loops are independent, then can get
ILP by taking instructions from different iterations

¢ Software pipelining: reorganizes loops so that each iteration is
made from instructions chosen from different iterations of the
original loop

Iteration
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Tteration
1 Tteration
2 Iteration
3 Tteration
4

Software-
pipelined
iteration
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SW Pipelining Example

Software Pipelined
LD  FO,0(R1)

Unrolled 3 times ADDD F4,F0,F2

1 LD FO0,0(R1)

2 ADDD F4,F0,F2 LD FO.-8(R1) i

3 SD O(R1),F4— 1LP:SD ~ O(R1),F4;  Stores M[i] |
4 LD F6,-8(R1) ,2  ADDD F4,F0,F2; Adds to M[i-1]
5 ADDD F8,F6,F2 L3 LD FO,-16(R1); loads M[i-2]
6 SD -8(R1).F8 4 SUBI R1,R1,#8

7 LD  F10,-16(R1 5 BNEZ R1,LP

8§ ADDD F12,F10,F2 SO O0(R1),F4

9 SD  -16(R1),F12 ADDD F4,FO0,F2

10 SUBI R1,R1,#24 SD -8(R1),F4

11 BNEZ R1,LOOP
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Compiler Support for ILP:
Trace Scheduling

® Creates long basic blocks by finding long paths in the code

Alil = Ali] + B[i]

Bli] = | X .
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Trace Scheduling

® Parallelism across IF branches vs. LOOP branches

® Two steps:
— Trace Selection

= Find likely sequence of basic blocks (trace) of (statically predicted) long
sequence of straight-line code

— Trace Compaction
= Squeeze trace into few VLIW instructions
= Need bookkeeping code in case prediction is wrong
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HW Support for More ILP

® Predication — Trading off branch hazards and control flow
constraints for increased instruction bandwidth

® (Case Studies

¢ Simultaneous Multithreading — Transforming thread level
parallelism (TLP) into ILP
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Predication: HW support for More ILP

Avoid branch prediction by turning branches into
conditionally executed instructions: (aka predicated
instructions)

addc,a, b (x) => if (x) thena=>b + c else NOP
— If false, then neither store result nor cause exception

— Expanded ISA of Alpha, MIPS, PowerPC, SPARC have
conditional move; PA-RISC can annul any following instr, [A64
can predicate any instruction (even have multiple predicates)

Id  F2,0(R2)
addd F4, F2, FO
multd F6, F4, F4
beqz R3,go on
addd F10, F0, F8
addi R2,R2,#8

go on: addi R2,R2, #8
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Predicated Execution

® Drawbacks to conditional instructions
— Still takes a clock & alu even if “annulled”
— Stall if condition evaluated late

— Complex conditions reduce effectiveness;
condition becomes known late in pipeline

— requires more operands! Typically only available as conditional
move.

¢ Advantages
— eliminate prediction, misprediction
— longer basic blocks, ...

® Critical technology for VLIW, sw pipelining. Why?
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Pentium 4 Summary

® 20-stage pipeline

® JA32 (x86) ISA translated to RISC-like uops

® Uops stored in trace cache

® Decode/retire 3 uops/cycle

¢ Execute 6 uops/cycle

® Dynamically scheduled

¢ Explicit Register Renaming

® Simultaneous Multithreading (hyper-threading)
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Intel Nehalem (Core 17)
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ILP Summary

® Parallelism is absolutely critical to modern computer

system performance, but at a very fine level.

® Mechanisms that create, or expose parallelism: loop

unrolling, software pipelining, code motion
® Mechanisms that allow the machine to exploit ILP:

pipelining, superscalar, dynamic scheduling, speculative

execution

CSE 240A

Dean Tullsen

Simultaneous Multithreading

Tullsen, Eggers, Levy, Simultaneous Multithreading: Maximizing On-Chip
Parallelism, ISCA, 1995
Tullsen, Eggers, Emer, Levy, Lo, Stamm, Exploiting Choice: Instruction Fetch
and Issue on an Implementable Simultaneous Multithreading Processor, ISCA,
1996
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Motivation Hardware Multithreading
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Superscalar Execution

Superscalar Execution with Fine-Grain Multithreading
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Simultaneous Multithreading

The Potential for SMT
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Goals A Conventional Superscalar Architecture

We had three primary goals for this architecture:
1. Minimize the architectural impact on conventional superscalar design.
2. Minimize the performance impact on a single thread.

3. Achieve significant throughput gains with many threads.
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An SMT Architecture
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Bottlenecks of the Baseline Improving Fetch Throughput

Architecture
® Instruction queue full conditions (12-21% of cycles) ®  The fetch unit in an SMT architecture has two distinct
— Lack of parallelism in the queue. advantages over a conventional architecture.
® Fetch throughput (4.2 instructions per cycle when queue not full) 1. Can fetch from multiple threads at once.

2. Can choose which threads to fetch.
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Improved Fetch Performance

¢ Fetching from 2 threads/cycle achieved most of the
performance from multiple-thread fetch.

® Fetching from the thread(s) which have the fewest
unissued instructions in-flight significantly increases
parallelism and throughput.
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This SMT Architecture, then:

® Borrows heavily from conventional superscalar design.
® Minimizes the impact on single-thread performance

¢ Achieves significant throughput gains over the superscalar
(2.5X, up to 5.4 IPC).
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Commercial SMT

® Alpha 21464 (®)

¢ Intel Pentium 4 “hyper-threading” processor.

® IBM Power 5 — 2 cores, 2 SMT threads/core

¢ IBM Power 6 — again, 2 cores, 2 SMT threads/core

® IBM Power 7 — 8 cores, 4 SMT threads/core

® Sun Niagara T1 (2006) — 8 cores, 4 threads/core (SMT?)
¢ Sun Niagara T2 — 8 cores, 8§ threads/core

¢ Intel Nehalem (core 17) 4-8 cores, 2 SMT threads/core
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