ILP in real code

SPEC
bench

® Based on all kinds of ideal
assumptions. Further limited

by:
— realistic branch prediction
gce — 55 — finite renaming registers
espresso _ 63 — imperfect alias analysis for

memory operations

i e
e foppp I 75
docuc. | 119

tomcatv | 150
0 20 40 60 80 100 120 140 160

Instruction issues per cycle

Window Size

CSE 240A Dean Tullsen CSE 240A Dean Tullsen
o 20 40 &0 a0 100 120 140 160
Instruction issues per cycle
Renaming Registers Memory Aliasing
11
10 Renaming 10 W Periect
gee 10 registers .
9 W Infinite
W 256 B Global/stack
15 w1z 15 perfect
15 med @inspection
BSPIeSS0 13 Qa2 BSPresso
[ None ONone
: ]
Benchmarks 49
Benchmarks 5% 49
fpppp
fppop
doduc
doduc
tomcatv 45
4
0 5 10 15 20 25 30 35 40 45 50
CSE 240A Dean Tullsen CSE 24C Instruction issues per cycle Dean Tullsen

Instruction issues per eycle




Exposing More ILP

® These techniques were originally motivated by VLIW,
which needs tons of ILP to work at all — but useful for
superscalar/dynamic/speculative processors, as well.

¢ Software Techniques
— Software Pipelining
— Trace Scheduling

® Hardware/Software Technique
— Predicated execution
— Simultaneous Multithreading

CSE 240A Dean Tullsen

Compiler support for ILP: Software
Pipelining

® Observation: if iterations from loops are independent, then can get
ILP by taking instructions from different iterations

¢ Software pipelining: reorganizes loops so that each iteration is
made from instructions chosen from different iterations of the
original loop

Iteration
0

Tteration
1 Tteration
2 Iteration
3 Tteration
4

Software-
pipelined
iteration

CSE 240A Dean Tullsen

SW Pipelining Example

Software Pipelined
LD  FO,0(R1)

Unrolled 3 times ADDD F4,F0,F2

1 LD FO0,0(R1)

2 ADDD F4,F0,F2 LD FO.-8(R1) i

3 SD O(R1),F4— 1LP:SD ~ O(R1),F4;  Stores M[i] |
4 LD F6,-8(R1) ,2  ADDD F4,F0,F2; Adds to M[i-1]
5 ADDD F8,F6,F2 L3 LD FO,-16(R1); loads M[i-2]
6 SD -8(R1).F8 4 SUBI R1,R1,#8

7 LD  F10,-16(R1 5 BNEZ R1,LP

8§ ADDD F12,F10,F2 SO O0(R1),F4

9 SD  -16(R1),F12 ADDD F4,FO0,F2

10 SUBI R1,R1,#24 SD -8(R1),F4

11 BNEZ R1,LOOP

CSE 240A Dean Tullsen

Compiler Support for ILP:
Trace Scheduling

® Creates long basic blocks by finding long paths in the code

Alil = Ali] + B[i]

Bli] = | X .

CSE 240A Dean Tullsen




Trace Scheduling

® Parallelism across IF branches vs. LOOP branches

® Two steps:
— Trace Selection

= Find likely sequence of basic blocks (trace) of (statically predicted) long
sequence of straight-line code

— Trace Compaction
= Squeeze trace into few VLIW instructions
= Need bookkeeping code in case prediction is wrong

CSE 240A Dean Tullsen

HW Support for More ILP

® Predication — Trading off branch hazards and control flow
constraints for increased instruction bandwidth

® (Case Studies

¢ Simultaneous Multithreading — Transforming thread level
parallelism (TLP) into ILP

CSE 240A Dean Tullsen

Predication: HW support for More ILP

Avoid branch prediction by turning branches into
conditionally executed instructions: (aka predicated
instructions)

addc,a, b (x) => if (x) thena=>b + c else NOP
— If false, then neither store result nor cause exception

— Expanded ISA of Alpha, MIPS, PowerPC, SPARC have
conditional move; PA-RISC can annul any following instr, [A64
can predicate any instruction (even have multiple predicates)

Id  F2,0(R2)
addd F4, F2, FO
multd F6, F4, F4
beqz R3,go on
addd F10, F0, F8
addi R2,R2,#8

go on: addi R2,R2, #8

CSE 240A bnez F6, loop Dean Tullsen

Predicated Execution

® Drawbacks to conditional instructions
— Still takes a clock & alu even if “annulled”
— Stall if condition evaluated late

— Complex conditions reduce effectiveness;
condition becomes known late in pipeline

— requires more operands! Typically only available as conditional
move.

¢ Advantages
— eliminate prediction, misprediction
— longer basic blocks, ...

® Critical technology for VLIW, sw pipelining. Why?

CSE 240A Dean Tullsen




Pentium Pro (ll, lll, etc.)
microarchitecture

Reservation Recorder
stations buffer
Instruction J| 16 bytes | Instruction 6 uops ) 20) ) (40 entries) | G raguation
fetch decode Renaming ExecEmon unit
16 bytes 3 instructions 3 UOPSI jﬂ—' 5“?'?' ID—' (3 uops
per cycle per cycle per cycle (5 total) per cycle)

Pentium 4 microarchitecture

(4K Entries)

‘ Front-End BTB

—

Instruction

TLB/Prefetcher
¥

‘< 64-bits wide

| Instruction Decoder |
¥

(512 Entries)

Trace Cacn_e BTB

Trace Cache
(12K pops)

™| pop Queue

Microcode
ROM

Quad

¥ Pumped
[ Allocator / Register Renamer ] 3.2 GB/s
| !
) _ ) Memory uop Queue [ Integer/Floating Point uop Queue Bus
© 2003 Elsevier Science (USA). All rights reserved. l ‘ Interf.
[Wemory Scheduler | [ Fast | Slow/General FP Scheduler Simple FP ntertace
L ] L Unit
R . . Integer Register File / Bypass Network ; FP;RQ Ister / B 5S
® 40 uncommitted instructions
i ; ; AGU AGU 2x ALY []] 2x aLu | | | slow aLu L2 Cache
® 20 unissued instructions a d . - (256K Byte
Load Store Simple Simple Complex SSE Move B-way)
Address Address Instr. Instr. Instr. SSE2
| ! 43GBIs
| L1 Data Cache (8Kbyte 4-way) 256 bits
1 |4
CSE 240A Dean Tullsen C Figure 4: Pentium™ 4 processor microarchitecture n
Uop
Queue
Unp Register Reygister
Queye Fename  Quewe  Sched Read  Exeeute L1 Cache Yiride Retire
i Shore |
T g ;
a) ['J—’
"
LZ Cache Uop i m
; Access ; Queue Decode | Queue Fill Queue - | > D
[L= Access] | i i
i : Trace
: : F ache . . . . .
) ® 126 in-flight instructions (ROB size)
CSE 240A Dean Tullsen CSE 240A

Dean Tullsen




Pentium 4 Summary

® 20-stage pipeline

® JA32 (x86) ISA translated to RISC-like uops

® Uops stored in trace cache

® Decode/retire 3 uops/cycle

¢ Execute 6 uops/cycle

® Dynamically scheduled

¢ Explicit Register Renaming

® Simultaneous Multithreading (hyper-threading)

CSE 240A Dean Tullsen

Intel Nehalem (Core 17)

128-Entry [ 22KE Inst_ cacho {lcur-way associalive) |+

et TLE |4 v
tour-way) 16-Byto pra-docode + macro-op
LR tusion, fetch bulfer

v
"‘",;":"‘ 18-Entry instruction quove
hardwarg |4 » » » »

¥ ¥ ¥ ¥

Complax Simple Simple Simplo

Micra ¥ macro-op Ao MACID-Op MACF-0p
decoder | decoder | decoder | | decoder
~codo P
) 4 v L 4
28-Enéry micro-op loop stroam dotoct bulfer
T
Fogisser alias table and aliocator
Ratiremont ¥
regisier e ¥ 128-Entry reardor buflor
¥
> 36-Entry resorvation station
¥ ¥ ¥ ¥ ¥ b
ALY ALLY Load Storn Slorm Al
skt st | acdress |nddress  data shift
SSE S8E n S X T SSE
shutlo shutflo Mamory order buth shultta
ALU AL il AL
1280 128-ba 128-bi
FMUL FMUL Stone FMUL
FOIV FOIV s oad FOV
o — . . N == - Y.
S12-Entry unifiod ¥ | 64-Entry cata TLB | | 52-KB duai-porind cala 256 KB unified (2

L2TLE (4-wary) b (d-way assocastive) | | cacho (B-wary pssocistive) | * cache (sxght-way)
Lokl | 2N . Fiers

£ MB all core shared and incusive L3+ Uincore arbitar (handies schoduling and
cache {16-way Associativa) N clockipowar stat diflorancos)
Figure 3.41 The Intel Core i7 pipeline structure shown with the memory system components. The total pipeline depth is 14
stages, with branch mispredictions costing 17 cycles. There are 48 load and 32 store buffers. The six independent functional units
can each begin execution of a ready micro-op in the same cycle.

ILP Summary

® Parallelism is absolutely critical to modern computer

system performance, but at a very fine level.

® Mechanisms that create, or expose parallelism: loop

unrolling, software pipelining, code motion
® Mechanisms that allow the machine to exploit ILP:

pipelining, superscalar, dynamic scheduling, speculative

execution

CSE 240A

Dean Tullsen

Simultaneous Multithreading

Tullsen, Eggers, Levy, Simultaneous Multithreading: Maximizing On-Chip
Parallelism, ISCA, 1995
Tullsen, Eggers, Emer, Levy, Lo, Stamm, Exploiting Choice: Instruction Fetch
and Issue on an Implementable Simultaneous Multithreading Processor, ISCA,
1996

CSE 240A Dean Tullsen




Motivation Hardware Multithreading

EEN  EEEEEEEENE

® Modern processors fail to utilize execution resources well. . . .
 Therei pro® te culprit Hie exeet Hrees W Conventional [} Multithreaded
Cre 18 10 SINSle culprit. _ . Processor e Processor
® Attacking the problems one at a time (e.g., specific latency-tolerance 3
solutions) always has limited effectiveness. L] =)
° _ i ; ; =
However, a general latency toleran_ce solution which can hide all [ | g
sources of latency can have a large impact on performance. ] g
W regs [l regs
[] [ PC |
[]
regs
CPU O CPU &
H
[
[]
CSE 240A Dean Tullsen CSE 240A Dean Tullsen

Superscalar Execution

Superscalar Execution with Fine-Grain Multithreading

E Issue Slots E Issue Slots
5 EELI] 5 BRI
4 U0 2 OO Thread 1
s EEO0 s mEo0
= B0 = [ I Thread 2
HIEEN I Thread 3
EEEN EEEN
OO0 0 EERC]
HEIEIN | I
] N ] N

CSE 240A Dean Tullsen CSE 240A Dean Tullsen

<«— |nstruction stream




Simultaneous Multithreading

The Potential for SMT

-~ 7 -
ﬁ Simultaneous Multithreading
Q67
% Issue Slots a 5
b [2]
: EEED g,
Q 3] -
g BEBRU  Thead! E
g EENE[] £ 37 ] ] ] )
i BEEDDO Thread 2 = 5 Fine-Grain Multithreading
3 5
EENE(] 5
Thread 3 31 C tional S 1
BEEENR E 1 onventional Superscalar
EEEO Thread 4 o —
EEOC]
BRI Thread 5 12 3 4 5 6 7 8
Number of Threads
CSE 240A Dean Tullsen CSE 240A Dean Tullsen
Goals A Conventional Superscalar Architecture

We had three primary goals for this architecture:
1. Minimize the architectural impact on conventional superscalar design.
2. Minimize the performance impact on a single thread.

3. Achieve significant throughput gains with many threads.

CSE 240A Dean Tullsen

Instruction Cache
Renaming]

floating point fp I fp Data
instruction queue units reg’s Cache

integer int integer |
instruction queue units reg’s




An SMT Architecture

||||| floating point fp I fp Data
instruction queue units reg’s Cache

Instruction Cache

Performance of the Naive Design

integer int integer |
instruction queue units reg’s

Register Unmodified Superscalar

Decode .
Renaming

Throughput (Instructions Per Cycle)
[98)
|

1 T T T T
2 4 6 8

Number of Threads
CSE 240A Dean Tullsen

Bottlenecks of the Baseline Improving Fetch Throughput

Architecture
® Instruction queue full conditions (12-21% of cycles) ®  The fetch unit in an SMT architecture has two distinct
— Lack of parallelism in the queue. advantages over a conventional architecture.
® Fetch throughput (4.2 instructions per cycle when queue not full) 1. Can fetch from multiple threads at once.

2. Can choose which threads to fetch.

CSE 240A Dean Tullsen CSE 240A Dean Tullsen




Improved Fetch Performance

¢ Fetching from 2 threads/cycle achieved most of the
performance from multiple-thread fetch.

® Fetching from the thread(s) which have the fewest
unissued instructions in-flight significantly increases
parallelism and throughput.

CSE 240A Dean Tullsen

Improved Performance

Improved

o 7]
)
>
o
8 41
&
g
o Baseline
9 37
=
72}
k=

21 ¢ [

Unmodified superscalar
1 T T . T
2 4 6 8
CSE 240A Number of Threads Dean Tullsen

This SMT Architecture, then:

® Borrows heavily from conventional superscalar design.
® Minimizes the impact on single-thread performance

¢ Achieves significant throughput gains over the superscalar
(2.5X, up to 5.4 IPC).

CSE 240A Dean Tullsen

Commercial SMT

® Alpha 21464 (®)

¢ Intel Pentium 4 “hyper-threading” processor.

® IBM Power 5 — 2 cores, 2 SMT threads/core

¢ IBM Power 6 — again, 2 cores, 2 SMT threads/core

® IBM Power 7 — 8 cores, 4 SMT threads/core

® Sun Niagara T1 (2006) — 8 cores, 4 threads/core (SMT?)
¢ Sun Niagara T2 — 8 cores, 8§ threads/core

¢ Intel Nehalem (core 17) 4-8 cores, 2 SMT threads/core

CSE 240A Dean Tullsen




