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ILP in real code

• Based on all kinds of ideal 
assumptions.  Further limited 
by:
– realistic branch prediction
– finite renaming registers
– imperfect alias analysis for 

memory operations
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Window Size
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Renaming Registers
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Memory Aliasing
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Exposing More ILP

• These techniques were originally motivated by VLIW, 
which needs tons of ILP to work at all – but useful for 
superscalar/dynamic/speculative processors, as well.

• Software Techniques
– Software Pipelining
– Trace Scheduling

• Hardware/Software Technique
– Predicated execution
– Simultaneous Multithreading
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Compiler support for ILP:  Software 
Pipelining

• Observation: if iterations from loops are independent, then can get 
ILP by taking instructions from different iterations

• Software pipelining: reorganizes loops so that each iteration is 
made from instructions chosen from different iterations of the 
original loop

Iteration 
0 Iteration 

1 Iteration 
2 Iteration 

3 Iteration 
4

Software- 
pipelined 
iteration
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SW Pipelining Example

Unrolled 3 times
1 LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4
4 LD F6,-8(R1)
5 ADDD F8,F6,F2
6 SD -8(R1),F8
7 LD F10,-16(R1)
8 ADDD F12,F10,F2
9 SD -16(R1),F12
10 SUBI R1,R1,#24
11 BNEZ R1,LOOP

Software Pipelined
LD F0,0(R1)
ADDD F4,F0,F2
LD F0,-8(R1)

1LP:SD 0(R1),F4;   Stores M[i]
2 ADDD F4,F0,F2;   Adds to M[i-1]
3 LD F0,-16(R1); loads M[i-2]
4 SUBI R1,R1,#8
5 BNEZ R1,LP

SD 0(R1),F4
ADDD F4,F0,F2
SD -8(R1),F4
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Compiler Support for ILP:
Trace Scheduling

• Creates long basic blocks by finding long paths in the code
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Trace Scheduling

• Parallelism across IF branches vs. LOOP branches
• Two steps:

– Trace Selection
 Find likely sequence of basic blocks (trace) of (statically predicted) long 

sequence of straight-line code
– Trace Compaction

 Squeeze trace into few VLIW instructions
 Need bookkeeping code in case prediction is wrong 
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HW Support for More ILP

• Predication – Trading off branch hazards and control flow 
constraints for increased instruction bandwidth

• Case Studies
• Simultaneous Multithreading – Transforming thread level 

parallelism (TLP) into ILP
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Predication: HW support for More ILP

• Avoid branch prediction by turning branches into 
conditionally executed instructions: (aka predicated
instructions)
add c, a, b (x)   =>  if (x) then a = b + c else NOP
– If false, then neither store result nor cause exception
– Expanded ISA of Alpha, MIPS, PowerPC, SPARC have 

conditional move; PA-RISC can annul any following instr, IA64 
can predicate any instruction (even have multiple predicates)

ld       F2, 0(R2)
addd  F4, F2, F0
multd F6, F4, F4
beqz   R3, go_on
addd   F10, F0, F8
addi    R2, R2, #8

go_on: addi    R2, R2, #8
bnez   F6, loop CSE 240A Dean Tullsen

Predicated Execution

• Drawbacks to conditional instructions
– Still takes a clock & alu even if “annulled”
– Stall if condition evaluated late
– Complex conditions reduce effectiveness; 

condition becomes known late in pipeline
– requires more operands!  Typically only available as conditional 

move.
• Advantages

– eliminate prediction, misprediction
– longer basic blocks, ...

• Critical technology for VLIW, sw pipelining.  Why?
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Pentium Pro (II, III, etc.) 
microarchitecture

• 40 uncommitted instructions
• 20 unissued instructions
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Pentium 4 microarchitecture
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Pentium 4 front-end
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Pentium 4 back-end

• 126 in-flight instructions (ROB size)
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Pentium 4 Summary

• 20-stage pipeline
• IA32 (x86) ISA translated to RISC-like uops
• Uops stored in trace cache
• Decode/retire 3 uops/cycle
• Execute 6 uops/cycle
• Dynamically scheduled
• Explicit Register Renaming
• Simultaneous Multithreading (hyper-threading)
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Intel Nehalem (Core I7)

Figure 3.41 The Intel Core i7 pipeline structure shown with the memory system components. The total pipeline depth is 14 
stages, with branch mispredictions costing 17 cycles. There are 48 load and 32 store buffers. The six independent functional units 
can each begin execution of a ready micro-op in the same cycle.
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ILP Summary

• Parallelism is absolutely critical to modern computer 
system performance, but at a very fine level.

• Mechanisms that create, or expose parallelism:  loop 
unrolling, software pipelining, code motion

• Mechanisms that allow the machine to exploit ILP:  
pipelining, superscalar, dynamic scheduling, speculative 
execution
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Simultaneous Multithreading

Tullsen, Eggers, Levy, Simultaneous Multithreading: Maximizing On-Chip 
Parallelism, ISCA, 1995

Tullsen, Eggers, Emer, Levy, Lo, Stamm, Exploiting Choice:  Instruction Fetch 
and Issue on an Implementable Simultaneous Multithreading Processor, ISCA, 

1996
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Motivation

• Modern processors fail to utilize execution resources well.
• There is no single culprit.
• Attacking the problems one at a time (e.g., specific latency-tolerance 

solutions) always  has limited effectiveness.
• However, a general latency-tolerance solution which can hide all 

sources of latency can have a large impact on performance.
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Hardware Multithreading
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Superscalar Execution
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Superscalar Execution 
with Fine-Grain Multithreading
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Simultaneous Multithreading
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The Potential for SMT
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Simultaneous Multithreading

Fine-Grain Multithreading

Conventional Superscalar
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Goals

We had three primary goals for this architecture:

1. Minimize the architectural impact on conventional superscalar design.

2.  Minimize the performance impact on a single thread.

3.  Achieve significant throughput gains with many threads.
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A Conventional Superscalar Architecture
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An SMT Architecture
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Performance of the Naïve Design
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Bottlenecks of the Baseline 
Architecture

• Instruction queue full conditions (12-21% of cycles)
– Lack of parallelism in the queue.

• Fetch throughput (4.2 instructions per cycle when queue not full)
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Improving Fetch Throughput

• The fetch unit in an SMT architecture has two distinct 
advantages over a conventional architecture.

1. Can fetch from multiple threads at once.
2. Can choose which threads to fetch.
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Improved Fetch Performance

• Fetching from 2 threads/cycle achieved  most of the 
performance from multiple-thread fetch.

• Fetching from the thread(s) which have the fewest 
unissued instructions in-flight significantly increases 
parallelism and throughput.
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Improved Performance
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This SMT Architecture, then:

• Borrows heavily from conventional superscalar design.
• Minimizes the impact on single-thread performance
• Achieves significant throughput gains over the superscalar 

(2.5X, up to 5.4 IPC).
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Commercial SMT

• Alpha 21464 ()
• Intel Pentium 4 “hyper-threading” processor.
• IBM Power 5 – 2 cores, 2 SMT threads/core
• IBM Power 6 – again, 2 cores, 2 SMT threads/core
• IBM Power 7 – 8 cores, 4 SMT threads/core
• Sun Niagara T1 (2006) – 8 cores, 4 threads/core (SMT?)
• Sun Niagara T2 – 8 cores, 8 threads/core
• Intel Nehalem (core i7) 4-8 cores, 2 SMT threads/core


