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Memory Subsystem Design

or
Nothing Beats Cold, Hard Cache
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Who Cares about Memory Hierarchy?

• Processor Only Thus Far in Course

CPU-DRAM Gap

1980: no cache in µproc; 
1995 2-level cache, 60% trans. on Alpha 21164  µproc
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Memory Cache

• Can put small, fast
memory close to 
processor.

• What do we put there?

cpu

memory

cache
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Memory Locality

• Memory hierarchies take advantage of memory locality. 
• Memory locality is the principle that future memory 

accesses are near past accesses.
• Memory hierarchies take advantage of two types of 

locality
– Temporal locality -- near in time  => we will often access the same 

data again very soon
– Spatial locality -- near in space/distance => our next access is 

often very close to our last access (or recent accesses).

1,2,3,1,2,3,8,8,47,9,10,8,8...
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Locality and cacheing

• Memory hierarchies exploit locality by cacheing (keeping close to the 
processor) data likely to be used again.

• This is done because we can build large, slow memories and small, fast 
memories, but we can’t build large, fast memories.

• If it works, we get the illusion of SRAM access time with disk capacity

SRAM (static RAM) -- 5-20 ns access time, very expensive (onchip faster)
DRAM (dynamic RAM) -- 60-100 ns, cheaper
disk -- access time measured in milliseconds, very cheap 
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A typical memory hierarchy

CPU

memory

memory

memory

memory

on-chip cache (s)

off-chip cache

main memory

disk

small expensive $/bit

cheap $/bit

big

•so then where is my program and data??
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Cache Fundamentals

• cache hit -- an access where the data
is found in the cache.
• cache miss -- an access which isn’t
• hit time -- time to access the higher cache
• miss penalty -- time to move data from
lower level to upper, then to cpu
• hit ratio -- percentage of time the data is found in the 
higher cache
• miss ratio -- (1 - hit ratio)

cpu

highest-level
cache

lower-level
memory/cache
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Cache Fundamentals, cont.

• cache block size or cache line size-- the
amount of data that gets transferred on a 
cache miss.
• instruction cache -- cache that only holds
instructions.
• data cache -- cache that only caches data.
• unified cache -- cache that holds both.

cpu

lowest-level
cache

next-level
memory/cache
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Accessing a simple cache

• blocksize = 4 words (16 bytes), cache size = 2 
blocks (32 bytes), associativity = full 630
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Memory

CPU

Cache

CPU reads addresses 8, 0, 4, 0, 4, 8, 12, 16, 20, writes 12, reads 8,
20, 28, 56, 20, 60, 12
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Cache Characteristics

• Cache Organization (size, associativity, block size)
• Cache Access
• Cache Replacement
• Write Policy
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Cache Organization: Where can a 
block be placed in the cache? 

• Block 12 placed in 8-block 
cache:
– Fully associative, direct mapped, 

n-way set associative
– index = pointer to the set in the 

cache where a memory location 
might be cached

(associativity = degree of freedom 
in placing a particular block of 
memory)

(set = a collection of cache blocks 
with the same cache index)
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Cache Access: How Is a Block Found 
In the Cache?

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index, expands tag

FA:  No index, large tags
DM: Large index, smaller tags

Address

Cache

tags data
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Cache Organization -- Overview

• A typical cache has three dimensions
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Cache Access

• 16 KB, 4-way set-associative cache, 32-bit address, byte-
addressable memory, 32-byte cache blocks/lines

• how many tag bits?
• Where would you find the word at addres 0x200356A4?

tag  data tag  data tag  data tag  data

index
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Which Block Should be Replaced on a 
Miss?

• Direct Mapped is Easy
• Set associative or fully associative:

– longest till next use (ideal, impossible)
– least recently used (best practical approximation)
– pseudo-LRU (e.g., NMRU, NRU)
– random (easy)
– how many bits for LRU?

Associativity: 2-way 4-way 8-way
Size LRU Random LRU Random LRU Random
16 KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%
64 KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%
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A set-associative cache

• A cache that can put a line of data in exactly n places is 
called n-way set-associative.

• The cache lines that share the same index are a cache set.

tag data

4 entries, each block holds one word, each word
in memory maps to one of a set of n cache lines

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
36 00100100
4 00000100
20 00010100

00000100
tag data
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Cache Access

• 32-bit address, and 128 KB cache with 64-byte blocks, 4-
way set associative.

4 blocks/set

??
 se

ts

32
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Cache Access

• 48-bit address, and 1 MB cache with 64-byte blocks, 8-
way set associative.

8 blocks/set

??
 se

ts

48
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Cache Access

• 64-bit address, and 32 KB cache with 32-byte blocks, 
direct-mapped.

4 blocks/set

??
 se

ts

64
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What Happens on a Write?

• Write through: The information is written to both the block in 
the cache and to the block in the lower-level memory.

• Write back: The information is written only to the block in the 
cache. The modified cache block is written to main memory 
only when it is replaced.
– is block clean or dirty?

• Pros and Cons of each:
– WT: read misses cannot result in writes (because of replacements)
– WB: no writes of repeated writes

• WT always combined with write buffers so that don’t wait for 
lower level memory
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What happens on a write miss?

• write-allocate -- make room for the cache line in the cache, 
fetch rest of line from memory.

• no-write-allocate (write-around) -- write to lower levels of 
memory hierarchy, ignoring this cache.

• Tradeoffs?
• Which makes most sense for write-back?
• Which makes most sense for write-through?
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21264 L1 Data Cache

• 64 KB, 64-byte blocks, 2-way set associative, ? blocks, ? sets
• write-back
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Cache Organization:
Separate Instruction and Data Caches?

Size Instruction Cache Data Cache Unified Cache
1 KB 3.06% 24.61% 13.34%
2 KB 2.26% 20.57% 9.78%
4 KB 1.78% 15.94% 7.24%
8 KB 1.10% 10.19% 4.57%
16 KB 0.64% 6.47% 2.87%
32 KB 0.39% 4.82% 1.99%
64 KB 0.15% 3.77% 1.35%
128 KB 0.02% 2.88% 0.95%

if 75% of accesses are instructions?
Other reasons to separate?
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Cache Performance

• CPU time = (CPU execution clock cycles + Memory stall 
clock cycles) x clock cycle time

• Memory stall clock cycles = (Reads x Read miss rate x 
Read miss penalty + Writes x Write miss rate x Write miss 
penalty)

• Memory stall clock cycles = Memory accesses x Miss rate 
x Miss penalty
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Cache Performance

CPUtime = IC x (CPIexecution + Memory stalls per instruction) 
x Clock cycle time

CPUtime = IC x (CPIexecution + Mem accesses per instruction x 
Miss rate x Miss penalty) x Clock cycle time
(includes hit time as part of CPI)

(Alternate view of memory performance)
Average memory-access time = Hit time + Miss rate x Miss 

penalty (ns or clocks)
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Improving Cache Performance

Average memory-access time = Hit time + Miss rate x Miss penalty (ns or 
clocks)

How are we going to improve cache performance??
1.

2.

3.
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Caches, pt I: Key Points

• CPU-Memory gap is a major performance obstacle

• Caches take advantage of program behavior: locality

• Designer has lots of choices -> cache size, block size, 
associativity, replacement policy, write policy, ...

• Time of program still only reliable performance measure


