
CSE 240A Dean Tullsen

Memory Subsystem Design

or
Nothing Beats Cold, Hard Cache

CSE 240A Dean Tullsen

Who Cares about Memory Hierarchy?

• Processor Only Thus Far in Course

CPU-DRAM Gap

1980: no cache in µproc;
1995 2-level cache, 60% trans. on Alpha 21164 µproc

CSE 240A Dean Tullsen

Memory Cache

• Can put small, fast
memory close to
processor.

• What do we put there?

cpu

memory

cache

CSE 240A Dean Tullsen

Memory Locality

• Memory hierarchies take advantage of memory locality.
• Memory locality is the principle that future memory

accesses are near past accesses.
• Memory hierarchies take advantage of two types of

locality
– Temporal locality -- near in time => we will often access the same

data again very soon
– Spatial locality -- near in space/distance => our next access is

often very close to our last access (or recent accesses).

1,2,3,1,2,3,8,8,47,9,10,8,8...

CSE 240A Dean Tullsen

Locality and cacheing

• Memory hierarchies exploit locality by cacheing (keeping close to the
processor) data likely to be used again.

• This is done because we can build large, slow memories and small, fast
memories, but we can’t build large, fast memories.

• If it works, we get the illusion of SRAM access time with disk capacity

SRAM (static RAM) -- 5-20 ns access time, very expensive (onchip faster)
DRAM (dynamic RAM) -- 60-100 ns, cheaper
disk -- access time measured in milliseconds, very cheap

CSE 240A Dean Tullsen

A typical memory hierarchy

CPU

memory

memory

memory

memory

on-chip cache (s)

off-chip cache

main memory

disk

small expensive $/bit

cheap $/bit

big

•so then where is my program and data??

CSE 240A Dean Tullsen

Cache Fundamentals

• cache hit -- an access where the data
is found in the cache.
• cache miss -- an access which isn’t
• hit time -- time to access the higher cache
• miss penalty -- time to move data from
lower level to upper, then to cpu
• hit ratio -- percentage of time the data is found in the
higher cache
• miss ratio -- (1 - hit ratio)

cpu

highest-level
cache

lower-level
memory/cache

CSE 240A Dean Tullsen

Cache Fundamentals, cont.

• cache block size or cache line size-- the
amount of data that gets transferred on a
cache miss.
• instruction cache -- cache that only holds
instructions.
• data cache -- cache that only caches data.
• unified cache -- cache that holds both.

cpu

lowest-level
cache

next-level
memory/cache

CSE 240A Dean Tullsen

Accessing a simple cache

• blocksize = 4 words (16 bytes), cache size = 2
blocks (32 bytes), associativity = full 630

8220

374
48

224

14912
1216

328
432
536

1740
324544

6348

8268

3752
456

14960
1264

Memory

CPU

Cache

CPU reads addresses 8, 0, 4, 0, 4, 8, 12, 16, 20, writes 12, reads 8,
20, 28, 56, 20, 60, 12

CSE 240A Dean Tullsen

Cache Characteristics

• Cache Organization (size, associativity, block size)
• Cache Access
• Cache Replacement
• Write Policy

CSE 240A Dean Tullsen

Cache Organization: Where can a
block be placed in the cache?

• Block 12 placed in 8-block
cache:
– Fully associative, direct mapped,

n-way set associative
– index = pointer to the set in the

cache where a memory location
might be cached

(associativity = degree of freedom
in placing a particular block of
memory)

(set = a collection of cache blocks
with the same cache index)

CSE 240A Dean Tullsen

Cache Access: How Is a Block Found
In the Cache?

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index, expands tag

FA: No index, large tags
DM: Large index, smaller tags

Address

Cache

tags data

CSE 240A Dean Tullsen

Cache Organization -- Overview

• A typical cache has three dimensions

tag data tag data tag data tag data

tag data tag data tag data tag data

tag data tag data tag data tag data

tag data tag data tag data tag data

.

.

.

Bytes/block (block size)

Blocks/set (associativity)

N
um

be
r o

f s
et

s (
ca

ch
e

si
ze

)

tag index block offset

CSE 240A Dean Tullsen

Cache Access

• 16 KB, 4-way set-associative cache, 32-bit address, byte-
addressable memory, 32-byte cache blocks/lines

• how many tag bits?
• Where would you find the word at addres 0x200356A4?

tag data tag data tag data tag data

index

CSE 240A Dean Tullsen

Which Block Should be Replaced on a
Miss?

• Direct Mapped is Easy
• Set associative or fully associative:

– longest till next use (ideal, impossible)
– least recently used (best practical approximation)
– pseudo-LRU (e.g., NMRU, NRU)
– random (easy)
– how many bits for LRU?

Associativity: 2-way 4-way 8-way
Size LRU Random LRU Random LRU Random
16 KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%
64 KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

CSE 240A Dean Tullsen

A set-associative cache

• A cache that can put a line of data in exactly n places is
called n-way set-associative.

• The cache lines that share the same index are a cache set.

tag data

4 entries, each block holds one word, each word
in memory maps to one of a set of n cache lines

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
36 00100100
4 00000100
20 00010100

00000100
tag data

CSE 240A Dean Tullsen

Cache Access

• 32-bit address, and 128 KB cache with 64-byte blocks, 4-
way set associative.

4 blocks/set

??
 se

ts

32

CSE 240A Dean Tullsen

Cache Access

• 48-bit address, and 1 MB cache with 64-byte blocks, 8-
way set associative.

8 blocks/set

??
 se

ts

48

CSE 240A Dean Tullsen

Cache Access

• 64-bit address, and 32 KB cache with 32-byte blocks,
direct-mapped.

4 blocks/set

??
 se

ts

64

CSE 240A Dean Tullsen

What Happens on a Write?

• Write through: The information is written to both the block in
the cache and to the block in the lower-level memory.

• Write back: The information is written only to the block in the
cache. The modified cache block is written to main memory
only when it is replaced.
– is block clean or dirty?

• Pros and Cons of each:
– WT: read misses cannot result in writes (because of replacements)
– WB: no writes of repeated writes

• WT always combined with write buffers so that don’t wait for
lower level memory

CSE 240A Dean Tullsen

What happens on a write miss?

• write-allocate -- make room for the cache line in the cache,
fetch rest of line from memory.

• no-write-allocate (write-around) -- write to lower levels of
memory hierarchy, ignoring this cache.

• Tradeoffs?
• Which makes most sense for write-back?
• Which makes most sense for write-through?

CSE 240A Dean Tullsen

21264 L1 Data Cache

• 64 KB, 64-byte blocks, 2-way set associative, ? blocks, ? sets
• write-back

CSE 240A Dean Tullsen

Cache Organization:
Separate Instruction and Data Caches?

Size Instruction Cache Data Cache Unified Cache
1 KB 3.06% 24.61% 13.34%
2 KB 2.26% 20.57% 9.78%
4 KB 1.78% 15.94% 7.24%
8 KB 1.10% 10.19% 4.57%
16 KB 0.64% 6.47% 2.87%
32 KB 0.39% 4.82% 1.99%
64 KB 0.15% 3.77% 1.35%
128 KB 0.02% 2.88% 0.95%

if 75% of accesses are instructions?
Other reasons to separate?

CSE 240A Dean Tullsen

Cache Performance

• CPU time = (CPU execution clock cycles + Memory stall
clock cycles) x clock cycle time

• Memory stall clock cycles = (Reads x Read miss rate x
Read miss penalty + Writes x Write miss rate x Write miss
penalty)

• Memory stall clock cycles = Memory accesses x Miss rate
x Miss penalty

CSE 240A Dean Tullsen

Cache Performance

CPUtime = IC x (CPIexecution + Memory stalls per instruction)
x Clock cycle time

CPUtime = IC x (CPIexecution + Mem accesses per instruction x
Miss rate x Miss penalty) x Clock cycle time
(includes hit time as part of CPI)

(Alternate view of memory performance)
Average memory-access time = Hit time + Miss rate x Miss

penalty (ns or clocks)

CSE 240A Dean Tullsen

Improving Cache Performance

Average memory-access time = Hit time + Miss rate x Miss penalty (ns or
clocks)

How are we going to improve cache performance??
1.

2.

3.

CSE 240A Dean Tullsen

Caches, pt I: Key Points

• CPU-Memory gap is a major performance obstacle

• Caches take advantage of program behavior: locality

• Designer has lots of choices -> cache size, block size,
associativity, replacement policy, write policy, ...

• Time of program still only reliable performance measure

