
CSE 240A Dean Tullsen

Improving Cache Performance

Average memory-access time = Hit time + Miss rate x Miss penalty (ns or clocks)

• 1. Reduce the miss rate,
• 2. Reduce the miss penalty, or
• 3. Reduce the time to hit in the cache.

CSE 240A Dean Tullsen

Reducing Misses

• Classifying Misses: 3 Cs
– Compulsory—The first access to a block is not in the

cache, so the block must be brought into the cache. These
are also called cold start misses or first reference misses.

– Capacity—If C is the size of the cache (in blocks) and
there have been more than C unique cache blocks
accessed since this cache was last accessed.

– Conflict—Any miss that is not a compulsory miss or
capacity miss must be a byproduct of the cache mapping
algorithm. A conflict miss occurs because too many
active blocks are mapped to the same cache set.

How To Measure

Misses in infinite
cache

Non-compulsory
misses in size X
fully associative
cache

Non-compulsory,
non-capacity
misses

CSE 240A Dean Tullsen

3Cs Absolute Miss Rate

CSE 240A Dean Tullsen

How To Reduce Misses?

• Compulsory Misses?

• Capacity Misses?

• Conflict Misses?

• What can the compiler do?

CSE 240A Dean Tullsen

Reduce Misses via Larger Block Size

• 16K cache, miss penalty for 16-byte block = 42, 32-byte is 44, 64-byte is 48.
Miss rates are 3.94, 2.87, and 2.64%. Which gives best performance (lowest
AMAT)?

CSE 240A Dean Tullsen

Reduce Misses via Higher Associativity

• Beware: Execution time is only final measure!
– Will Clock Cycle time increase?
– Hill [1988] suggested hit time external cache +10%, internal + 2%

for 2-way vs. 1-way

CSE 240A Dean Tullsen

Example: Avg. Memory Access Time
vs. Miss Rate

• Example: assume CT = 1.10 for 2-way, 1.12 for 4-way, 1.14 for
8-way vs. CT direct mapped

Cache Size Associativity
(KB) 1-way 2-way 4-way 8-way
1 7.65 6.60 6.22 5.44
2 5.90 4.90 4.62 4.09
4 4.60 3.95 3.57 3.19
8 3.30 3.00 2.87 2.59
16 2.45 2.20 2.12 2.04
32 2.00 1.80 1.77 1.79
64 1.70 1.60 1.57 1.59
128 1.50 1.45 1.42 1.44

AMAT

CSE 240A Dean Tullsen

Reducing Misses by emulating
associativity: Victim Cache

• HR of associative + access
time of direct mapped?

• Add buffer to hold data
recently discarded from cache

• Jouppi [1990]: 4-entry victim
cache removed 20% to 95%
of conflicts for a 4 KB direct
mapped data cache

CSE 240A Dean Tullsen

Reducing Misses by HW Prefetching of
Instruction & Data

• E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in stream buffer
– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from 4KB

cache; 4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8 streams

got 50% to 70% of misses from 2 64KB, 4-way set associative
caches

• Prefetching relies on extra memory bandwidth that can be
used without penalty

CSE 240A Dean Tullsen

Reducing Misses by
SW Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC, IA64, Tera)
– Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC)
– Special prefetching instructions cannot cause faults;

a form of speculative execution

• Issuing Prefetch Instructions (including address calculation)
takes time
– Is cost of prefetch issues < savings in reduced misses?

CSE 240A Dean Tullsen

Reducing Misses by Various
Compiler Optimizations

• Instructions
– Reorder procedures in memory so as to reduce misses
– Profiling to look at conflicts
– McFarling [1989] reduced cache misses by 75% on 8KB direct mapped cache

with 4 byte blocks
• Data

– Merging Arrays: improve spatial locality by single array of compound elements
vs. 2 arrays

– Loop Interchange: change nesting of loops to access data in order stored in
memory

– Loop Fusion: Combine 2 independent loops that have same looping and some
variables overlap

– Blocking: Improve temporal locality by accessing “blocks” of data repeatedly
vs. going down whole columns or rows

CSE 240A Dean Tullsen

Merging Arrays Example

/* Before */
int val[SIZE];
int key[SIZE];

/* After */
struct merge {

int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key

CSE 240A Dean Tullsen

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through memory
every 100 words

CSE 240A Dean Tullsen

Loop Fusion Example

/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}
2 misses per access to a & c vs. one miss per access

CSE 240A Dean Tullsen

Blocking Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};
x[i][j] = r;
};

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row of x[]

• Capacity Misses a function of N & Cache Size:
– worst case => 2N3 + N2.

• Idea: compute on BxB submatrix that fits in cache
CSE 240A Dean Tullsen

Blocking Example

/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;
};

• Capacity Misses from 2N3 + N2 to 2N3/B +N2

• B called Blocking Factor
• Conflict Misses Are Not As Easy...

CSE 240A Dean Tullsen

Key Points

• 3 Cs: Compulsory, Capacity, Conflict Misses
• Reducing Miss Rate

– 1. Reduce Misses via Larger Block Size
– 2. Reduce Misses via Higher Associativity
– 3. Reducing Misses via Victim Cache
– 4. Reducing Misses by HW Prefetching Instr, Data
– 5. Reducing Misses by SW Prefetching Data
– 6. Reducing Misses by Compiler Optimizations

• Remember danger of concentrating on just one parameter when
evaluating performance

• Next: reducing Miss penalty

CPUtime IC CPI Execution
Memory accesses

Instruction
Miss rate Miss penalty

Clock cycle time

CSE 240A Dean Tullsen

Improving Cache Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

CSE 240A Dean Tullsen

Reducing Miss Penalty: Read Priority
over Write on Miss

• The easiest way to resolve RAW hazards (and other ordering issues)
between loads and stores is to send them all to memory in instruction
order.

• If always wait for write buffer to empty might increase read miss penalty
by 50%

• Check write buffer contents before read;
if no conflicts, let the memory access continue

• Write Back Caches?
– Read miss may require write of dirty block
– Normal: Write dirty block to memory, and then do the read
– Instead copy the dirty block to a write buffer, then do the read, and then do

the write
– CPU stalls less since it can restart as soon as read completes

CSE 240A Dean Tullsen

Early Restart and Critical Word First

• Don’t wait for full block to be loaded before restarting CPU
– Early restart—As soon as the requested word of the block arrives, send it

to the CPU and let the CPU continue execution
– Critical Word First—Request the missed word first from memory and

send it to the CPU as soon as it arrives; let the CPU continue execution
while filling the rest of the words in the block. Also called wrapped fetch
and requested word first

• Most useful with large blocks,
• Spatial locality a problem; often we want the next sequential

word soon, so not always a benefit (early restart).

CSE 240A Dean Tullsen

Non-blocking Caches to reduce
stalls on misses

• Non-blocking cache (or lockup-free cache) allowd the data
cache to continue to supply cache hits during a miss

• “hit under miss” reduces the effective miss penalty by being
helpful during a miss instead of ignoring the requests of the
CPU

• “hit under multiple miss” or “miss under miss” can further
lower the effective miss penalty by overlapping multiple misses
– Significantly increases the complexity of the cache controller as there can

be multiple outstanding memory accesses
• assumes “stall on use” not “stall on miss” which works naturally

with dynamic scheduling, but can also work with static.

CSE 240A Dean Tullsen

Value of Hit Under Miss for SPEC

CSE 240A Dean Tullsen

But…

• The primary way to reduce miss penalty…

cpu

cache

cache

Memory
CSE 240A Dean Tullsen

Miss Penalty Reduction: Second
Level Cache

• L2 Equations
AMAT = Hit TimeL1 + Miss RateL1 x Miss PenaltyL1

Miss PenaltyL1 = Hit TimeL2 + Miss RateL2 x Miss PenaltyL2

AMAT = Hit TimeL1 + Miss RateL1 x (Hit TimeL2 + Miss RateL2 +
Miss PenaltyL2)

• Definitions:
– Local miss rate— misses in this cache divided by the total

number of memory accesses to this cache (Miss rateL2)
– Global miss rate—misses in this cache divided by the total

number of memory accesses generated by the CPU
(Miss RateL1 x Miss RateL2)

cpu

lowest-level
cache

next-level
memory/cache

CSE 240A Dean Tullsen

Multi-level Caches, cont.

• L1 cache local miss rate 10%, L2 local miss rate 40%. What are
the global miss rates?

• L1 highest priority is fast hit time. L2 typically low miss rate.
• Design L1 and L2 caches in concert.
• Property of inclusion -- if it is in L1 cache, it is guaranteed to be

in the L2 cache -- simplifies design of consistent caches.
• L2 cache can have different associativity (good idea?) or block

size (good idea?) than L1 cache.
• These principles can continue to be applied recursively to

Multilevel Caches
– Danger is that time to DRAM will grow with multiple levels in between

CSE 240A Dean Tullsen

Reducing Miss Penalty Summary

• Four techniques
– Read priority over write on miss
– Early Restart and Critical Word First on miss
– Non-blocking Caches (Hit Under Miss)
– Multi-level Caches

CSE 240A Dean Tullsen

Review: Improving Cache Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

CSE 240A Dean Tullsen

Fast Hit times via
Small and Simple Caches

• This is why Alpha 21164 has 8KB Instruction and 8KB
data cache + 96KB second level cache

• I and D caches used to be typically Direct Mapped, on chip

CSE 240A Dean Tullsen

DM Hit Time + Associative Hit Rate ->
Way Prediction

• Add bits (?) to each cache line to predict which way is
going to hit.

• How is that going to help?
– Read one tag & compare
– Speculatively read data from that one block

• Next cycle
– Read other tags and compare

• Pentium 4
tag data tag data lru wp

CSE 240A Dean Tullsen

Fast hits by Avoiding
Address Translation: Virtual Cache

• Send virtual address to cache? Called Virtually Addressed Cache or just Virtual
Cache vs. Physical Cache
– Every time process is switched logically must flush the cache; otherwise get false hits

 Cost is time to flush + “compulsory” misses from empty cache
– Dealing with aliases (sometimes called synonyms);

Two different virtual addresses map to same physical address
– I/O must interact with cache…

• Solution to aliases
– HW that guarantees that every cache block has unique physical address
– SW guarantee : lower n bits must have same address; as long as covers index field &

direct mapped, they must be unique; called page coloring
• Solution to cache flush

– Add process identifier tag that identifies process as well as address within process: can’t
get a hit if wrong process

CSE 240A Dean Tullsen

Virtual Cache

• Physical Cache Virtual Cache

cpu

TLB

cache

Virtual address

Physical address

cpu

TLB cache

Virtual address

Physical address

CSE 240A Dean Tullsen

Avoiding Translation: Process ID
impact

CSE 240A Dean Tullsen

Cache Bandwidth: Trace Caches

• Fetch Bottleneck – Cannot execute instructions faster than
you can fetch them into the processor.

• Cannot typically fetch more than about one taken branch
per cycle, at best (why? Why one taken branch?)

• Trace cache is an instruction cache that stores instructions
in dynamic execution order rather than program/address
order.

• Implemented on the Pentium 4

CSE 240A Dean Tullsen

Trace Cache

Conventional Cache Trace Cache

A
B
C
beq J:
D
E
F

J: G
H
jsr W
…

W
X
ret

A B C beq D E F G
H jsr I J K L M N

W X ret …

A B C beq GH jsr W X ret I

CSE 240A Dean Tullsen

Cache Optimization Summary

Technique MR MP HT Complexity
Larger Block Size
Higher Associativity
Victim Caches
HW Prefetching of Instr/Data
Compiler Controlled Prefetching
Compiler Reduce Misses
Priority to Read Misses
Early Restart & Critical Word 1st
Non-Blocking Caches
Second Level Caches
Small & Simple Caches
Way Prediction
Avoiding Address Translation
Trace Cache?

CSE 240A Dean Tullsen

Cache Research at UCSD

• Hardware prefetching of complex data structures (e.g., pointer chasing)
• Fetch Target Buffer

– Let branch predictor run ahead of fetch engine
• Runtime identification of cache conflict misses
• Speculative Precomputation (helper thread prefetching)

– Spawn threads at runtime to calculate addresses of delinquent
(problematic) loads and prefetch creates prefetcher from application
code.

• Code Layout to Reduce Icache Conflict Misses
– Also, for multithreaded processors

• Code Layout to Reduce Dcache Conflict Misses
– Also, for multithreaded processors

CSE 240A Dean Tullsen

Cache Research at UCSD, cont.

• Event-driven compilation – while main thread runs, hw monitors
identify problematic loads, then fork new compilation thread (on SMT
or CMP) to alter code.
– Dynamic value specialization
– Inline software prefetching
– Helper thread prefetching (speculative precomputation)

• Software Data Spreading
– Insert migration calls in loops with large data sets, spreading the data over

multiple private caches.
• Inter-core Prefetching

– Prefetch thread runs ahead of main thread, but in another core. After an
interval, they swap cores. The main thread finds all of its data preloaded
into the new cache, and the prefetcher starts prefilling the next cache.

