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Brief Introduction to Multiprocessing

more is better?

CSE 240A Dean Tullsen

Multiprocessors

• why would you want a multiprocessor?
• what things can it do well?
• What things can’t it do well?
• Multicore vs. big uniprocessor?
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What’s wrong with the uniprocessor?

• Complexity
• Power
• Lack of Instruction Level Parallelism
• Marginal gains of incremental logic
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Uniprocessor Complexity

• The complexity/size of many functional blocks scale 
quadratically with issue width.

• When IW = 2 or 4, no big deal.  Starts to hurt at 8+.
• Rename table has O x W ports 

– O = # operands
– W = fetch width

• Issue queue must do Q x O x W comparisons.
– Q = size of IQ (typically grows as W grows)

• Bypass logic is a W x W interconnect.
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Uniprocessor Complexity

• 4-issue HP PA-8000 – issue queue takes 20% of area.
• [Farkas, et al. 96] claim only 20% gain 4-issue to 8-issue 

due to cycle time limitations.
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The Marginal Utility of Logic

• Example – lines of a 2048-line cache.
• Similarly,

– Reservation stations
– Renaming registers
– Branch predictor size
– Even issue width

• Exceptions???
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The Price of Performance
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Lessons learned

• Marginal utility of each new transistor is decreasing

• If n is the number of transistors
 Performance is O(sqrt(n))
 Power and Area are O(n)
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CPU G2
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CPU G1 4X throughput
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The Alternative

• [Olukotun 1996]
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Classifying Multiprocessors

• Interconnection Network

• Memory Topology

• Programming Model
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Interconnection Network

• Bus
• Network
• pros/cons?
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Memory Topology

• UMA (Uniform Memory Access)
• NUMA (Non-uniform Memory Access)
• pros/cons?
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Programming Model

• Shared Memory -- every processor can name every address 
location

• Message Passing -- each processor can name only it’s local 
memory.  Communication is through explicit messages 
(multicomputer).

• pros/cons?

• find the max of 100,000 integers on 10 processors.
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Parallel Programming

Processor A

index = i++;

Processor B

index = i++;

• Shared-memory programming requires synchronization to provide 
mutual exclusion and prevent race conditions
– locks (semaphores)
– barriers

i = 47
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Multiprocessor Caches (Shared 
Memory)

• the problem -- cache coherency
• the solution?
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What Does Coherence Mean?
• Informally:

– Any read must return the most recent write
– Too strict and very difficult to implement

• Better:
– A processor sees its own writes to a location in the correct 

order.
– Any write must eventually be seen by a read
– All writes are seen in order (“serialization”).  Writes to the 

same location are seen in the same order by all processors.
• Without these guarantees, synchronization doesn’t 

work.
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Cache Coherency

• write-update
– on each write, each cache holding that location updates its value

• write-invalidate <= most common
– on each write, each cache holding that location invalidates the cache line.

• both schemes MUCH easier on a bus-based multiprocessor
• potentially requires a LOT of messages, but...
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Cache Coherency

• A good cache coherency protocol can avoid sending unnecessary (and 
expensive) invalidate or update messages.

• Allows each cache line to be in one of several states.
• MESI (Illinois)

– modified
– exclusive
– shared
– invalid
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Cache Coherency

• How do you know when an external read/write occurs?
• Snooping protocols
• Directory protocols

Cache

Processor

Cache

Processor

Cache

Processor

Single bus

Memory I/O

CSE 240A Dean Tullsen

Potential Solutions

• Snooping Solution (Snoopy Bus):
– Send all requests for unknown data to all processors
– Processors snoop to see if they have a copy and respond accordingly 
– Requires “broadcast”, since caching information is at processors
– Works well with bus (natural broadcast medium)
– Dominates for small scale machines

• Directory-Based Schemes
– Keep track of what is being shared in one centralized place
– Distributed memory => distributed directory (avoids bottlenecks)
– Send point-to-point requests to processors
– Scales better than Snoop
– Actually existed BEFORE Snoop-based schemes
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An Example Snoopy Protocol --
MESI (or Illinois) protocol

• Invalidation protocol, assumes write-back cache
• Each block of memory is in one state:

– Clean in all caches and up-to-date in memory
– Dirty in exactly one cache
– Not in any caches

• Each cache block is in one state:
– (M)odified: cache has only copy, its writeable, and dirty
– (E)xclusive: cache has only copy, but it’s clean
– (S)hared: block can be read
– (I)nvalid: block contains no data

• Read (and write) misses: cause all caches to snoop
• Writes to shared line are treated as misses

CSE 240A Dean Tullsen

MESI Protocol

Proc 1 Proc 2

lw A
lw A
sw A
sw A

lw A
lw A

Processor 1 cache

Processor 2 cache

Bus

Memory
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Other protocols

• MESI protocol
– Big advantage over 3-state protocol (no shared private state) 

because doesn’t require synch messages for private data.

• MOESI = Modified, Owned, Exclusive, Shared, Invalid
– Owned (dirty in multiple caches, owned in one) => owner 

responsible for writing back shared, dirty line.

• What traffic does MOESI avoid?
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Multicore Architectures

• What is unique/different about multicore architectures?

• Bus or network?
• Shared memory or message passing?
• Need coherence?

Low latency 
communication.
Cores close, 
memory far away.
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A case study – Intel Nehalem (Core i7)
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Crossbar Network 

8 MB L3

Memory
Controller

QPI (chip-chip 
interconnect)

Memory

-L1 I cache  4-way, 3 cycles
-L1 D cache 8-way, 4 
cycles, physical, write-back, 
write-allocate
-L2 8-way, non-inclusive, 
11 cycles, write-back, write-
allocate

L3 16-way inclusive
Directory?
MESI-F  (MOESI?)
52 cycles
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Single-ISA Heterogeneous 
Multicore Architectures

• Single-ISA Heterogeneous Multi-Core Architectures: The Potential for 
Processor Power Reduction, Rakesh Kumar, Keith Farkas, Norm P. 
Jouppi, Partha Ranganathan, Dean M. Tullsen, In 36th International 
Symposium on Microarchitecture, December, 2003.

• If you are putting a bunch of cores on a single processor, why make 
them all the same?

• Having heterogeneous cores greatly increases the chance that a thread 
running on the processor finds a core well suited to its execution needs.
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Multiprocessors -- Key Points

• Network vs. Bus
• Message-passing vs. Shared Memory
• Shared Memory is more intuitive, but creates problems for both the 

programmer (memory consistency, requiring synchronization) and the 
architect (cache coherency).


