

Assembly Language Lab 3

1. (Quiz) 32bit Protected Mode (80386)

• In 386 CPU, registers become 32‐bit wide except segment registers (selectors)
remain 16‐bits as they are. Two new 16‐bit segment registers are also added,
FS and GS. (Segment registers are now called selectors according to their new
function in 80386 protected mode as explained next.)

• This extension made the single segment size up to 4GB (as the upper limit of
32‐bit offset registers).

31 16 8 0

AH AL

AX

EAX

• So how a segment register stores the 32‐bit address of memory? It can be
solved like in real mode and store only the most significant 16 bits of the
address, but doing this adds too hard limitation on the position of the segment
in memory.

• Instead, segment register is interpreted differently in protected mode. It is
interpreted as an index into a descriptor table than a register stores the
starting address of the segment. Descriptor table is a table containing physical
addresses of all segments beside some other information about these
segments. It is stored in memory and its location is stored in a special register.

• In addition, protected mode uses a technique called virtual memory. The basic
idea of virtual memory system is to only keep the data and code in physical
memory that programs are currently using. Other data and code are stored
temporarily on disk until they are needed again.

• Therefore, each segment is assigned an entry in a descriptor table. This entry
has all the information that the system needs to know about that segment.
This information includes: is it currently in memory; if in memory, where is it
(its physical address); access permissions (e.g. read‐only, read‐write). The index
of the entry of the segment is the selector value that is stored in the segment
register.

• To calculate the physical address from selector‐offset pair:
1‐ Get the segment physical address returned from the descriptor table,
2‐ Add this address to the offset to get the physical address of the specified

location.

2013-2014 1

• Furthermore, segments can be divided into smaller 4K‐sized units called pages.

The virtual memory system works with pages now instead of segments. This
means that only parts of segment may be in memory at any one time.

2. The First Assembly Program

• Assembly language program is a series of statements which are either
computer instructions or statements called directives.

• Each assembly instruction represents exactly one machine instruction.
However, directives do not generate any machine code. Directives are just
pseudo‐instructions which instruct the assembler how to translate the
program into machine code.

• The general form of an assembly instruction is:

[label:] mnemonic [operands] [;comment]

Label: allows the program to refer to a line of code by a name. (Actually, it is a
name for the address of the machine code of this line.)
Mnemonic and operands: together perform the real work of the program.
Mnemonic can be an instruction (like MOV, ADD) or directive (like BYTE, END).
Comment is any set of words preceded by a semi‐colon.

• As we know, a program is divided into segments. There are directives that

allow a programmer to define the starting and the ending of these segments.
.DATA, .CODE, and .STACK directives are used to express the starting of data,
code, and stack segments respectively. These directives tell the assembler that
the next lines in the program belong to the specified segment. The segment
ends by defining another segment directive or by the end of code file.

• Data segment is used to define program data. Stack segment is used to store
data temporarily like saving registers values in the beginning of procedure call.
Code segment contains the program instructions that do the required work.

3. Skeleton Program

The following code is a skeleton program that specifies the required statements to
write an assembly program.

.386

.MODEL Flat, STDCALL
.STACK 4096
.DATA

;Your initialized data

.CODE

<label>

2013-2014 2

;Your

code ret
END <label>

Explanation for the above skeleton program:

.386
An assembler directive, telling the assembler to use 80386 instructions set and disable

later series instructions (like those of 486, Pentium…).

.MODEL

It specifies the program memory model. Allowed models are [TINY, SMALL,
COMPACT, MEDIUM, LARGE, HUGE, or FLAT]. language_type can be [C, BASIC,
FORTRAN, PASCAL, SYSCALL, or STDCALL] and used to specify the compatibility with
high level language in case there is an integration between the assembly code and
another high level language code. The memory models differ in number of code and
data segments and referencing type near or far (explained later). The following table
shows the differences among memory models:

Memory Model Default Default # code segments # data segments
 Code Data

Tiny (DOS) Near Near Single segment for both

Small Near Near 1 1

Medium Far Near multiple 1

Compact Near Far 1 multiple

Large Far Far multiple multiple

Huge Far Far multiple multiple

Flat (Windows) Near Near Single segment for both

Flat memory model and stdcall language type are often used with win32 assembly
programs. We will use it with the most of programs we write during the course.

.STACK [stack_size]
A directive defines the stack segment and its size in bytes. The default size is 1024

byte. Nothing can be placed in the stack segment after its definition. .Stack directive
just defines the size of the stack segment without allowing placing initial data in it.

.DATA
It defines the data segment where a programmer can place initialized data

variables used in the program.

2013-2014 3

memory_model, [language_type]

.CODE
It defines the code segment where assembly instructions are placed. The code
segment or the main procedure in it must be ended by ret instruction (or anything
similar that terminates the program execution) which returns control to the OS.

END <label>
End directive indicates the end of assembly code in this file. A label must be

specified with END directive to tell the assembler where the program entry point
exists (i.e. from which line the program should begin its execution).

4. Modified Skeleton Program

Text book we study offers a library which provides some basic operations required
in many assembly programs. This library can be used by adding the following line in
your program code:

INCLUDE Irvine32.inc

This line tells the assembler to include all defined functions in this file. It is like
#include in C++ or using in C#. So we use the following modified skeleton program as
a template for any program we write later on.

INCLUDE Irvine32.inc

.data
.code
main: ;define a label main

exit ;terminate the execution of the program

END main ;end the assembler work, and make the main as program

;entry point

Note that the following lines already exist in Irvine32.inc and so they are not written

again in our program code.
.386
.MODEL Flat, STDCALL
.STACK 4096

Also, the code segment or the main procedure in it will be ended by exit which
returns control to Windows after program terminate. It is an EQU for exitprocess API
function and declared in Irvine32.inc.

5. Basic Instructions

MOV Instruction

The most basic instruction is the MOV instruction. It moves data from one location
to another (like the assignment operator in a high‐level language). It takes two
operands:

2013-2014 4

mov dest, src

dest and src must have the same size and both should not be memory operands

Examples:
; store 3 into EAX register (3 is immediate operand)

mov eax, 3

mov bx, ax ; copy the value of AX into the BX register

ADD Instruction

The ADD instruction is used to add integers.

add eax, 4 ; eax = eax + 4

add al, ah ; al = al + ah

6. The Assembler

Assembly code we study is compiled on Microsoft Macro Assembler (MASM).
MASM is mainly a command line assembler which means a programmer writes
assembly code in a text editor then uses command prompt to compile and link
her/his code using MASM. Now, MASM 8 is integrated with Visual C++ 2005, so we
can use VC++ 2005 to write, build and debug assembly programs. However, we can
use this assembler solely to assemble our programs using command line too.

The following two sections explain compilation procedures and assume:
1‐ Visual Studio 2005 is installed in C:\Program Files\Microsoft Visual Studio 8

directory and Visual C++ is included in its installation.
2‐ Files of Irvine library are placed in C:\Irvine directory

7. How to assemble/debug using command line
To assemble your assembly code using MASM command line:

1‐ Go to C:\Irvine folder and copy asm32.bat batch file to your windows directory
(i.e. C:\windows).

2‐ Make a directory for storing your assembly code files and name it, let say
“MyAsm”.

3‐ Write your assembly code in any text editor like Notepad then save it in
“MyAsm” directory as, say “main.asm”. (don’t forgot the file extension .asm).

4‐ Open command prompt (from Start menu > Run, type “cmd” and press enter)
5‐ Go to MyAsm directory in the command prompt by typing “cd C:\MyAsm” 6‐
Type “asm32 main” and press enter. (don’t type the file extension .asm)
7‐ If source file is assembled ok, a message appears saying “The executable file

main.exe was produced”. Otherwise, error messages are displayed. Fix error(s)
in your code and repeat the previous step again.

2013-2014 5

8‐ To test the program created type: main.exe in command prompt and press
enter.

Example 1: the first program for assembling demo

INCLUDE Irvine32.inc

.data
.code
main:

mov eax,10000h ; EAX = 10000h
add eax,40000h ; EAX = 50000h

call DumpRegs

exit ;terminate the execution of the program
END main ;end the assembler work, and make the main as the program

 ;entry point

DumpRegs is a function defined in Irvine32 library and it shows the registers

values and call instruction calls other procedures or functions.
To debug your program in command line:

1‐ Instead of using “asm32 main” to assemble your code, use “asm32 /D main”.
/D option allows Visual Studio 2005 to open your exe and to be ready for
debugging.

2‐ To begin debugging, step into (or press F11) in your exe and your code will be
opened in VS 2005 in debug mode.

8. How to assemble/debug using Visual Studio 2005
To assemble your code using Visual C++ 2005:

Go to C:\Irvine folder and copy Project_Template folder to your directory.
Project_Template folder contains a C++ project that is configured to use Irvine library
directly without any additional configuration.
Any time we want to make a new assembly project, we get a copy from
Project_Template and edit our code in the new copy.
To debug your program in Visual C++ 2005:

Simply, step into (or press F11) in your code much like C# code debugging.

2013-2014 6

9. Using Visual Studio 2005 Debugger

In this section, we review VS 2005 Debugger capabilities. VS 2005 Debugger
allows you to:

• Step through your program, viewing the source code
• Set breakpoints in your code
• View CPU registers and flags
• Watch the values of program variables
• View the runtime stack
• Display blocks of memory

Start the Debugger

Press the F10 key to start the debugger. Your environment should appear as
in the figure below, except that your window configuration may be different.

Watch Window

Select Windows from the Debug menu, and select Watch 1. A Watch window is
like an electronic spreadsheet that displays the names and values of selected
variables. As you step through a program, you can see variables in this window
change value. Initially, the window is empty, but you can drag any program variable
into the window with your mouse or even by typing its name in the watch window
directly.

Drag (or Type) the x, y, and &x variables into the Watch window and note their
current values. The values are initially displayed in decimal, so select hexadecimal
format by right‐clicking on the watch window and selecting Hexadecimal Display
from the popup menu, as shown in the figure. Note that the &x refers to the address
of the x variable.

Memory Window

Select Windows from the Debug menu, and select Memory. The Memory window
displays a raw dump of memory in either hexadecimal or decimal. It is particularly
useful when working with array variables. Since we don't have any arrays in the
program, let's display the value of x. Next to the Address label, type: &x (or
0x00404000)

The Memory window displays a series of individual memory bytes, beginning at
the address of x. Right‐click on the window, and select 4‐byte Integer to display
memory in double word chunks, as shown in the figure below. Along the left side of
the memory window is shown the address of the first value in each line. Also, at the
right side, it displays the text interpretation of the memory content in ANSI code.

2013-2014 7

Register Window

Select Windows from the Debug menu, and select Register. The Register window
displays the contents of the CPU registers. The flag values are not shown by default,
but you can add them in by right‐clicking and selecting Flags.

Step Into (F11)/ Step Over (F10)

Another way to step through a program is to use the Trace (F11) command. It
steps down into procedure calls. In contrast, the F10 key just executes procedure
calls without tracing into the procedure code.

2013-2014 8

 10. Defining Data Items

The assembler provides a set of directives that permit allocating data items with
various sizes. The general form of declaring variables is:

[name] Type initialization

Name: the variable name.
Type: is one of the data types that determine the number of bytes allocated for that
variable. They can be one of the following:

Unsigned Signed Size (in bytes)

BYTE SBYTE 1

WORD SWORD 2

DWORD SDWORD 4

QWORD 8

TBYTE 10

Initializer: it is the initial value that will be stored in this variable upon allocation. It
should fit into the variable size. Also, it can be a single value or a comma‐separated
list of values and in this case the variable will refer to an array of these values. If
there is no specific initial value for that variable, you just put a question mark ‘?’.
Possible values (or expressions) that can be given in the initializer part are:

Initializer Example Remarks

Integer constant 2, 33d, 1CEh, d: decimal, h: hexadecimal, b: binary Decimal is

 1010100b, ‐5 the default

 negative numbers are stored in 2’s comp. form

String constant ‘A’, “F”, ‘Hello’, It is often used with BYTE data type

 “Hello”

Integer expression 3+4, 6*5‐3 The result of the integer expression should fit

 the size of the variable

You can also define arrays by using this form:

[name] Type repeat-count Dup(initialization)

Repeat‐Count specifies the number of items in the array and initializer is the initial
value for each item. If the initializer is a single value then every item will be initialized

2013-2014 9

by this value. However, if it is a list, then each item in the array will take the
corresponding initial value from the list.

Examples:

ByteVal0 BYTE ? ;Un-initialized byte

ByteVal1 BYTE 48 ;Decimal value

ByteVal2 BYTE 30H ;Hexdecimal value

ByteVal3 BYTE 01010110B ;Binary value

ByteVal4 BYTE 1, 2, 3, 4 ;Define 4-items array of size byte

ByteVal5 BYTE 'Hello' ;character string

ByteVal6 BYTE 'H','e','l','l','o'

 ;list of characters and it’s equivalent to

 ;the previous character string ‘Hello’

ByteVal7 BYTE 5 Dup(3) ;Define 5-items array each item

ByteVal8 BYTE 3 Dup(1,2,3)

;initialized by value = 3

;3-items array and initialized as 1, 2, 3

WordVal0 WORD ? ;uninitialized word

WordVal1 WORD 0FF30H ;Hexdecimal value

WordVal2 WORD 65, 310 ;Define 2-words array

WordVal3 WORD 10 Dup(43) ;Define 10-words array each item

 ;initialized by value = 43

DWordVal0 DWORD ? ;uninitialized double word

DWordVal1 DWORD 6F34A030H ;Hexdecimal value

DWordVal2 DWORD 69065, 350, 65 ;Define 3 double words array

DWordVal3 DWORD 5 Dup(?) ;Define 5 double Words array without

 ;initializing its items

Notes:
2. Intel processors store the value of multi‐byte variable (e.g. WORD,

DWORD…etc) in little Indian order. This means that the least significant byte is
stored in the lowest address byte while the most significant byte is stored in
the highest address byte. For example,

Val1 DWORD 12345678h

If the offset address of Val1 is 100, for example, then, the following will be the
placement of values in that variable:

Offset Value

100: 78h
101: 56h
102: 34h
103: 12h

2013-2014 10

2. When specifying a hexadecimal value and begins with a letter (A‐F), you have
to put a zero in the begging of this value. If you do not put this zero, the
assembler will be confused if this is a hexadecimal value or normal label. For
example,
Hexval: WORD E123h ;Error: assembler thinks E123h is a label

Hexval: WORD 0E123h ;correct: as labels never starts with number

Symbolic Constants

The equ directive can be used to define symbols. Symbols are named constants that
can be used in the assembly program. The format of defining symbolic constants is:

symbol equ value

Symbol is considered as a substitution for its value and it cannot be modified by any
instruction within the program or redefined by another directive and so it is different
from memory variables.

Example:
PI_VALUE equ 3.14

11. Addressing Modes

As we know, most assembly instructions have operands. The instruction operands
can reside whether in a register or in memory. There are a number of methods that
allow accessing operands. These methods are called addressing. Common addressing
modes in Intel assembly language are:

1. Register Addressing: using register name like MOV AX, DX
2. Immediate Addressing (source operand only) by specifying the operand value

in the instruction itself like MOV EAX, 23
3. Direct memory Addressing: using the variable name like MOV AX, mem_var
4. Direct Offset Addressing like MOV CL, byteArr[2], MOV CL, [byteArr+2] or

MOV CL, byteArr+2. This example copies the 2
nd

 byte after byteArr to CL. This
is much like accessing items in an array but here the number used expresses

on a number of bytes not an index of items. For example, to get the 2
nd

 item in

a DWORD array, we use dwordArr[4] (not dwordArr[1]). That is because the 1
st

item is dwordArr[0], the 2
nd

 item is dwordArr[4], 3
rd

 item is dwordArr[8] and
so on.

5. Indirect memory Addressing uses register value as the operand address (not
the operand value). Base registers (EBX, EBP), index registers (ESI, EDI) and
other general registers (EAX, ECX, EDX) can be used to reference to memory
items by their addresses. Register value is considered to be the offset address

2013-2014 11

within a segment. All registers are associated with data segment except EBP
associated with stack segment. This mode has variations such as:

• MOV BX, [ESI]
• Base Displacement Addressing like MOV ECX, [EBX+3]
• Base‐Index Addressing like MOV DX, [EBX+ESI]
• Base‐Index with Displacement Addressing like MOV AX, [EBX+ESI+4]

Example 1: Addressing Modes

Debug the following program and notice changes in the registers and memory
variables.

INCLUDE Irvine32.inc

.data
BYTE 50h

Xval

Yval BYTE ?

Zval WORD 10h, 20h, 30h, 40h

.code

main:

AX, 1034H ;Immediate addressing mode (Ax = 1034H)

MOV

MOV DX, AX ;register addressing mode (DX = 1034H)

MOV CL, Xval ;Direct-memory addressing mode (CL = 50H)

;Note that number in brackets or that added to zval expresses bytes.

;Since zval is word -sized, to get the third item, we have to multiply by

;2. If it is double word-sized we should multiply by 4.

MOV CX, Zval[4] ;direct offset addressing mode (CX = 30h)
MOV CX, [Zval+4] ;direct offset also (exactly like Zval[4])

MOV CX, Zval+4 ;direct offset also (exactly like Zval[4])

;OFFSET reserved word retrieves the address of the next variable.
MOV EBX, offset Xval ;put the offset address of Xval in EBX
MOV ESI, offset Zval ;put the offset address of Zval in ESI

MOV EDI, offset Yval ;put the offset address of Yval in EDI

MOV CL, [EBX] ;indirect memory addressing mode.

 ;It is equivalent to MOV CL, Xval (CL = 50h)

MOV BYTE PTR [EDI], 25h ;indirect memory addressing mode.
 ;BYTE PTR tells the memory location
 ;pointed by EDI is of size BYTE. (Yval =

 ;25h)

;MOV [EDI], 20 ;ERROR: must specify what the size the [EDI] refers.
 ;the assembler cannot guess if 20 will be stored in

 ;byte, word, double word or even more.

2013-2014 12

MOV AX, [ESI+0] ;index with displacement addressing

MOV BX, [ESI+2] ;These 4 instructions copy the 4 items of Zval
MOV CX, [ESI+4] ;array to ax, bx, cx, dx registers respectively.
MOV DX, [ESI+6]

exit

END main

2013-2014 13

