[bookmark: page1]
Assembly Language Lab 4

1. FLAGS Register

Flags register is a special register, its bits indicate the status of various activities from the last instruction executed. Its bits values are accessed by conditional jumps instructions (explained later). Most important flags are:

[bookmark: _GoBack]CF (Carry flag): contains carry out of high‐order bit of data item following an arithmetic operation and some shift and rotate operations. It is often used to indicate if the result of an unsigned arithmetic operation is too large to fit in the destination.

OF (Overflow flag): indicates the result of a signed arithmetic operation is too large to fit in the destination such that there is a carry to sign bit (i.e. it is set if there is a carry into sign bit and no carry out).

ZF (Zero flag): if result of arithmetic or logic operation is zero then it is set to 1, otherwise it is cleared to 0.

SF (Sign Flag): a positive result from an arithmetic operation clears it to 0, otherwise it is set to 1

2. Basic Instructions

MOV/MOVZX/MOVSX Instructions

The most basic instruction is the MOV instruction. It moves data from one location to another (like the assignment operator in the high‐level language). It takes two operands: a source (a register, a memory location or an immediate value) and a destination (a register or a memory location).
Format:

mov dest, src

dest and src must have the same size and both should not be memory operands. Also, you cannot move an immediate value to segment registers.

Example:
[bookmark: page6]
	mov
	eax, 3
	;
	store 3 into EAX register
	(3 is an immediate value)

	mov
	bx, ax
	;
	copy the value of AX into
	the BX register

Moving data from a smaller location to a larger location is really an issue and need special instructions as CPU don’t know exactly how to fill the high order bits of the destination. Study this example:

If we have an 8‐bit value 11111110b and we want to move it to a larger register, say a 16‐bit register. If the CPU filled the higher 8 bits with 0’s then the new number will be

00000000 11111110

But this number will be totally different if the original number is treated as a signed number. Why? Because if 11111110 is a signed number, then it represents ‐2 while 00000000 11111110 represents 254. This difference happens as the number is negative and because 0’s were added in the higher bits, the sign bit is changed to 0 and so the number is converted to positive. So, in case of signed number, the higher order bits should follows the sign bit of the original number. In other words, if the sign bit is 1, then fill them by 1’s. Otherwise, fill them by 0’s. Then what about the unsigned number? Actually, they are not a problem as they are always positive, and filling the higher bits by 0’s is always correct.

MOVZX and MOVSX instructions are dedicated instructions to deal with moving from different sizes locations. MOVZX instruction is with unsigned values while MOVSX instruction is used with signed values. Remember that the programmer is who knows a value is treated as signed or unsigned according to the program logic.

Example:

	MOV AL, 11111110B
	;AL = 254
	(unsigned), AL = -2 (signed)

	MOVZX BX,AL
	;BX =
	254
	

	MOVSX CX, AL
	;CX =
	-2
	

INC/ DEC Instructions

INC (increment) and DEC (decrement) instructions are used to add 1 and subtract 1 from a single operand respectively.

Format:

INC reg/mem

DEC reg/mem
[bookmark: page7]
Flags affected: OF, SF, ZF

Note: INC and DEC instructions do not affect the carry flag.

ADD/SUB Instructions

The ADD and SUB instruction are used to add and subtract integers respectively.

ADD/SUB dest, src

Format:

ADD/SUB reg, reg

ADD/SUB mem, reg
ADD/SUB reg, mem
Flags affected: OF, CF, SF, ZF

Examples:

add eax, 4 ; eax = eax + 4 sub ebx, 3 ; ebx = ebx – 3
NEG Instruction

NEG instruction reverses the sign of a number by converting it to the two’s complement form.

Format:
NEG reg/mem

Flags affected: CF, OF, SF, ZF

Note: NEG instruction produce invalid values when the result cannot fit the operand. If so, the OF is set. For example, when we try to NEG the value ‐128, the value +128 cannot fit in 8‐bit and so the overflow flag is set.

	mov
	al, -128
	;al
	=
	10000000b

	neg
	al
	;al
	=
	10000000b, OF = 1

Example : Basic Instructions

Debug the following program and notice the changes in registers values

INCLUDE Irvine32.inc

.data Rval DD ?

Xval DD 26 Yval DD 30
Zval DD 40
2013-2014				13

	[bookmark: page8].code
	
	
	

	Main:
	DumpRegs
	
	

	call
	
	
	

	;MOVSX, MOVZX
	
	

	mov al, 0AAh
	;ecx = 0FFAAh
	

	movsx ecx, al
	
	

	movzx ebx, al
	;ecx = 00AAh
	

	call
	dumpRegs
	
	

	; INC and DEC
	
	

	mov ax,1000h
	; 1001h
	

	inc ax
	
	

	dec ax
	; 1000h
	

	call
	DumpRegs
	
	

	; Expression: Rval = -Xval + (Yval - Zval)
	

	mov
	eax,Xval
	; -26
	

	neg
	eax
	
	

	mov
	ebx,Yval
	; -10
	

	sub
	ebx,Zval
	
	

	add
	eax,ebx
	; -36
	

	mov
	Rval,eax
	
	

	call
	DumpRegs
	
	

; Overflow flag example:

	mov
	al,+127
	; OF = 1 as +128 cannot fit the 8-bit register (al)
	

	add
	al,1
	
	

	call
	dumpregs
	
	

	mov
	al,-128
	; OF = 1 as -129 cannot fit the 8-bit register (al)
	

	sub
	al,1
	
	

	call dumpregs
	
	

	; Zero flag example:
	

	mov
	cx,1
	; ZF = 1
	

	sub
	cx,1
	
	

	mov
	ax,0FFFFh
	; ZF = 1
	

	inc
	ax
	
	

	; Sign flag example:
	

	mov
	cx,0
	; SF = 1
	

	sub
	cx,1
	
	

	mov
	ax,7FFFh
	; SF = 1
	

	add
	ax,2
	
	

	; Carry flag example:
	

	mov
	al,0FFh
	; CF = 1, AL = 00
	

	add
	al,1
	
	

	exit
	
	
	

	END main
	
	

	
	
	
	

High level language provides program control statements like if‐statement and while‐loop to control the program execution flow. Assembly language does not have such complex program control as instructions. Instead, it uses branch (jump, or goto‐ like) instructions to control the execution flow. However, there are a set of MASM directives that allow writing control structures like if and while statements in assembly code. In the next sections, program control instructions are introduced with a set of illustrating examples.

3. JMP ­ Unconditional Jump

JMP instruction transfers program execution to the address specified by the destination operand. It does not affect flags register. It just updates the EIP register by the new address and so the program execution resumes from that address.

Jumps may be short (between –128 and +127 bytes), near (between –32,768 and +32,767 bytes from the instruction following the jump), or far (in a different code segment). When the 80386+ processors are in FLAT memory model, short jumps range is from –128 to +127 bytes and near jumps range is from –2 to +2 gigabytes.

Format:
Jmp label

Example: Using JMP instruction, infinite loop

This program will never end. It continues printing registers values and never exit.

INCLUDE Irvine32.inc

.data

.code main PROC
L1:	
call DumpRegs	
jmp L1				;go to L1 line of code	

;the program execution will never get here.

exit main ENDP END main

4. CMP ­ Compare Two Operands

CMP instruction compares two operands as a test for a subsequent conditional‐ jump (Conditional jumps will be explained later). CMP make comparison by subtracting the source operand from the destination operand and setting the flags according to the result. CMP is the same as the SUB instruction, except that the result is not stored anywhere. Only the flags are affected (like SF, ZF, CF, and OF).

Format:

CMP reg/mem, reg/mem/immed

The following restrictions on CMP instruction should be considered:

1. All combinations of operands are allowed except CMP mem, mem. It is not accepted.
2. Can't compare two segment registers.
3. Can't compare operands with different sizes.

Example: Using CMP instruction

Debug the following program and notice changes in the flags after each CMP instruction.

INCLUDE Irvine32.inc

.data
x dword ?
.code main PROC

mov ax, 10 mov bx, 50 cmp ax, bx

mov eax, 10 mov ecx, 10 cmp eax, ecx

mov eax, 50 mov x, 10 cmp eax, x

exit

main ENDP

END main

;subtract: 10 - 50. Result is Negative. ;CF = 1, ZF = 0, OF = 0, SF = 1

;subtract: 10 - 10. Result is Zero. ;CF = 0, ZF = 1, OF = 0, SF = 0

;subtract: 50 - 10. Result is Positive. ;CF = 0, ZF = 0, OF = 0, SF = 0
5 . Conditional Jumps

Conditional jump instructions transfer the program execution to a specified label if certain flags conditions are true. They are often used after a CMP instruction to give the effect of if‐statement (or even while‐statement) in high level languages. Thus, CMP is used to compare between two operands and set flags accordingly while conditional jumps are used to test these flags to determine the relation between those two operands and jump if the relation is occurred.

Format: conditional jump instructions have the format Jxxx label where xxx express the relation tested. The following table shows the conditional jump instructions:

	Relation
	
	For unsigned data
	
	For signed data
	

	Equal/Zero
	
	JE/JZ
	
	

	Not Equal/Not Zero
	
	JNE/JNZ
	

	Above/Greater
	
	JA/JNBE
	
	JG/JNLE
	

	Above or equal/
	
	JAE/JNB
	
	JGE/JNL
	

	Greater or equal
	
	
	
	
	

	
	
	
	
	
	

	Below/Less
	
	JB/JNAE
	
	JL/JNGE
	

	Below or equal/
	
	JBE/JNA
	
	JLE/JNG
	

	Less or equal
	
	
	
	
	

Notes:

· The difference between the two columns of instructions in the above table is that the first column of instructions considers that the data compared are unsigned data while the second column considers that the data are signed data.

· For example, JA jumps to the given label if the flags specify that the first operand is larger than the second one as unsigned data but JG jumps to the given label if the flags specify that the first operand is larger than the second one as signed data. We should note that if 11111111B is compared with 0 then it is larger as an unsigned value (255) but smaller as a signed value (‐1).

Example: Using Conditional Jumps

This example accepts two integers from the user and prints the relation between those integers: greater, less, or equal.

INCLUDE Irvine32.inc

.data
strgreater byte "X is above than Y", 0
strless byte "X is below than Y", 0 strequal byte "X is equal to Y", 0 x dword ?

y dword ?

	.code
	
	

	main PROC
	;An Irvine function that reads an 32-bit unsigned
	

	call ReadDec
	
	

	
	;decimal integer from user and stores it in EAX
	

	mov x, eax
	;register.
	

	
	
	

	call ReadDec
	
	

	mov y, eax
	
	

	cmp x, eax
	;eax still has the y value
	

	ja above
	;Assume unsigned data. use JA and JB (Not JG and JL)
	

	jb below
	
	

	je equal
	
	

above:

mov edx, offset strgreater ;handle above case call writestring

jmp next

below:

mov edx, offset strless ;handle below case call writestring

jmp next

equal:

mov edx, offset strequal ;handle equal case call writestring

jmp next

	next:
	;An Irvine function that prints new line
	

	call CrLf
	
	

	exit
	
	

	main ENDP
	
	

	END main
	
	

Notes:

· ReadDec function is a function defined in Irvine library. It reads a 32‐bit unsigned decimal integer from the user and stores it in EAX Register, stopping when the Enter key is pressed, leading spaces are ignored. ReadDec will set the Carry flag, and reset EAX to zero if the value entered cannot be represented as a 32‐bit unsigned integer (blank or larger than 2^32‐1). If you need to store the entered value in a variable, you need to move it from EAX to this variable.
· OFFSET reserved word is an operator that retrieves the offset address of the given variable.
· Writestring function is a function defined in Irvine library. It prints a string constant to which the EDX register points. The string must be null‐terminated (ends with a byte contains 0). This explains why string variables are appended by 0 at its initializer.
· CrLf function is a function defined in Irvine library. It prints a new line. It actually prints carriage return/linefeed sequence (0Dh, 0Ah) to standard output which makes cursor to go to a new line.

Example: Using Conditional Jumps (Revisited)

This example is the same as Example 3a but with signed numbers and fewer labels.

INCLUDE Irvine32.inc

.data

strgreater byte "X is greater than Y", 0 strless byte "X is less than Y", 0 strequal byte "X is equal to Y", 0

x SDWORD ? y SDWORD ?

.code main PROC

call readint 	;An Irvine function that reads an 32- bit signed ;decimal integer from user and stores it in EAX register.
mov x, eax
call readint
mov y, eax
cmp x, eax
jge greaterOrequal 	;jump if greater or equal	
mov edx, offset strless 	;handle less case

call writestring		;(not greater and not equal)
jmp next			;go to end to avoid executing

greaterOrequal: 			;greater or equal case
je equal				;flags still preserve their values.
;No need to compare again.

mov edx, offset strgreater ;handle greater case
call writestring

jmp next	

equal:					;handle equal case
mov edx, offset strequal
call writestring
next:

call CrLf exit

main ENDP END main

Notes:

- ReadInt function is a function defined in Irvine library. It reads a 32‐bit signed decimal integer from the user and stores it in EAX Register, stopping when the Enter key is pressed, leading spaces are ignored, and an optional leading + or ‐ sign is permitted. ReadInt will display an error message, set the Overflow flag, and reset EAX to zero if the value entered cannot be represented as a 32‐bit signed integer. If you need to store the entered value in a variable, you need to move it from EAX to this variable.

6 . LOOP instruction ­ like for loop statement

Assembly language provides several instructions designed to implement for‐like

loops. Each of these instructions takes a code label as its single operand. These instructions are LOOP, LOOPE/LOOPZ, and LOOPNE/LOOPNZ. We concern now LOOP instruction. LOOP instruction considers ECX register as its loop counter. It keeps decrementing ECX and jumping to its label till ECX becomes zero. Therefore, the operation of LOOP instruction is:
LOOP: Decrements ECX. If ECX != 0, branch to label.

Format
LOOP	label

Example : Sum of an Integer Array

This example calculates the summation of an array. It first gets the offset of the array and stores it in ESI register. Then, initialize ECX by the length of the array. Within the loop, it accumulates the current element of the array then slides ESI to point to the next element of the array and so on till the ECX becomes zero.

INCLUDE Irvine32.inc

.data
Arr1		DWORD	10, 20, 30, 40, 50
sum_val 	DWORD	?

.code
main PROC
	mov esi, offset Arr1	 ;put array address in esi
	mov eax, 0				;initialize eax by zero for temp sum
	mov ecx, 5				;initialize ecx (loop counter)
						;by array size
sum_loop:
	add eax, DWORD PTR [esi]
	add esi, 4				;increment esi pointer by 4
						;(size of array element)
	loop sum_loop	 ;ECX decremented implicitly by LOOP instruction
	
	call writeint	 ;output the sum (which already stored in EAX)
	mov sum_val, eax	
	call CrLf

	exit
main ENDP
END main	

Notes:

· PTR is an operator that overrides the size of an operand. It is always preceded by a Type (BYTE, WORD, DWORD…etc). In the instruction add eax, DWORD PTR [esi], you can remove DWORD PTR as the assembler will assume a default size equals to the size of the second operand which in this case DWORD. If ax is used instead of eax, WORD size will be assumed and so on.

· Writeint function is a function defined in Irvine library. It prints a signed integer stored in EAX on the screen.

· We specified the length of the array and the size of each element explicitly within the code. There are operators that retrieve the length of an array (i.e. number of items) and get the type of items.

· LENGTHOF operator retrieves the length of an array. For example, the instruction mov ECX, LENGTHOF Arr1 gets the length of Arr1 array and stores it in ECX.

· TYPE operator retrieves the number of bytes allocated for each item in the

given array. For example, the instruction add esi, TYPE Arr1 adds 4 to esi if Arr1 is DWORD array, adds 2 if Arr1 is WORD array and adds 1 if Arr1 is BYTE array.

7. Translating Standard Control Structures

The following table shows examples of how to translate high level language program control statements into their equivalent in assembly language using CMP and conditional jump instructions (assuming unsigned values).

	Statement
	In C++
	In Assembly

	IF‐ELSE
	If(i==j)
{
X = 10;
}
else
{
Y = 10;
}
	Mov eax, i
Cmp eax, j
Jne else
Mov X, 10
Jmp endif
else:
Mov Y, 10
endif:

	IF
	If(i>j)
{
X = 5;
}
Y = 5;
	Mov eax, i
Cmp eax, j
Jna endif
Mov X, 5
endif:
Mov Y, 5

	While‐loop
	while(i > j)
{
x += i;
i--;
}
	Mov eax, i
while:
cmp eax, j
jna endwhile
add x, eax
dec eax
jmp while
endwhile:
mov i, eax

Example: Find the Minimum Value

This example finds the minimum value in an integer array. The array is first entered by the user then the minimum value is printed on the screen

INCLUDE Irvine32.inc

ARR_SIZE equ 5							;size of the array
.DATA
Arr1	SDWORD ARR_SIZE dup(0) ;allocate SDWORD array of size ARR_SIZE
	 			 ;initialized by zeros
minVal SDWORD 7fffffffh	;initialize the min variable by the
					;largest value SDWORD can contain
strPrompt BYTE 'Enter array items: ', 0
strMsg BYTE 'The min value = ', 0

.CODE
main PROC
mov edx, offset strPrompt	;put the address of strPrompt in edx
;as a parameter to WriteString
call WriteString
mov ecx, LENGTHOF Arr1	;initialize loop counter ecx
mov edi, OFFSET Arr1

L1:
call readint 		;take a signed integer from user
mov [edi], eax		;store this integer in the array
add edi, TYPE Arr1	;slide EDI to point to the next item

cmp eax, minVal	 	;compare current integer with the min
jge loop_stat		;if eax >= min, jump to LOOP statement
mov minVal, eax		;otherwise, update the min value

loop_stat:
loop L1			;loop till ecx == 0
mov edx, offset strMsg ;put the address of strMsg in edx
			 	 ;as a parameter for WriteString function
call WriteString
mov eax, minVal 	 	;put the min value in eax as a
				;parameter for WriteInt function
call WriteInt
call CrLf
	
exit 					;terminate the program execution
main ENDP
END main

Notes

· Largest value of any signed variable is the variable that its bits are all 1’s except the sign bit (the most significant bit). Therefore, largest signed BYTE value is 7FH (+127); largest signed WORD value is 7FFFH (+32767) and so on. (Can you predict the smallest value how it should be?)

· We don’t need to store integer values entered by the user in an array to find the minimum value. We store them for demonstration purposes.

