
2013-2014 1

Assembly Language Lab 8

String Primitive Instructions

String primitive instructions are highly optimized instructions to work on strings or
integer arrays. These instructions are MOVSx, CMPSx, SCASx, STOSx, LODSx where x
in each instruction name is replaced by b, w or d to make the instruction works with
byte, word or double-word arrays respectively.

These instructions use memory operands pointed by the ESI register or EDI register
or both. Used register(s) is automatically incremented or decremented after
instruction execution based on the Direction flag (a bit in the EFLAGS register). If the
direction flag is cleared (DF = 0), registers are incremented. Otherwise (DF = 1), they
are decremented. Direction flag can be set by std instruction, and cleared by cld
instruction

They often used with repeat prefix which allows them to be automatically repeated
using ECX as a counter. So, you can process an entire array or string using only single
instruction. The following repeat prefixes are used:

Prefix Description

REP Repeat while ECX > 0

REPE/REPZ Repeat while ECX > 0 and zero flag is set

REPNE/REPNZ Repeat while ECX > 0 and zero flag is clear

When repeat prefix is used, the sequence of its operation is as follows:
1. Test repeat condition(s) [ECX > 0 and zero flag status with REPE and REPNE]

2. If test success, perform the instruction (in addition to incrementing or

decrementing ESI or EDI or both). Otherwise, skip the entire instruction.

MOVSB / MOVSW / MOVSD Instructions

These instructions copy data pointed by ESI to the memory location pointed by
EDI. They are used with repeat prefixes to copy arrays and strings.

Example 1: Copy an Array

This example uses string primitive instructions to copy items from double word array
to another

include irvine32.inc
.data

source dword 5 dup(10)

target dword 5 dup(?)

2013-2014 2

.code

main proc
cld ;clear direction flag. Move forward

mov ecx, lengthof source

mov esi, offset source

mov edi, offset target

rep movsd

exit

main endp

end main

Note that after rep movsd is executed the ESI and EDI are pointing to the next
item after the end of source and target arrays respectively.

CMPSB / CMPSW / CMPSD

These instructions compare a memory operand pointed by ESI (source) with the
memory operand pointed by EDI (destination). They actually subtract target from
source and set flags according to the result like CMP instruction. In the following
sample code, we find that source is less than target, so when JA is executed the
condition fails and the conditional jump is not taken.

.DATA
SOURCE DWORD 1234h

TARGET DWORD 5678h

.CODE

MOV ESI, OFFSET SOURCE

MOV EDI, OFFSET TARGET
CMPSD ;like cmp [ESI], [EDI] except cmp can

;not take two memory operands

JA l1

JMP l2

When these instructions are used with REPE/REPNE repeat prefixes to compare items
from two arrays and stop comparing on the first mismatch. Conditional jumps can be
used later on to decide if the source array is greater or less than the destination.

Example 2a: Compare two strings

This example uses primitive string instructions to compare two strings assuming that

2013-2014 3

both strings have the same size.

include irvine32.inc
.data

source byte 'ameen' target byte 'ayman'

strSmall byte "source is smaller",0

strGreat byte "source is greater",0

strEqual byte "both strings are equal",0

.code

main proc

cld ;clear the direction flag
mov esi, offset source

mov edi, offset target
mov ecx, lengthof source

repe cmpsb ;compare the 2 arrays and stop at the

;first mismatch

jb source_smaller ;check last char in source and last

ja source_greater ;char in dest
mov edx, offset strEqual

jmp done

source_smaller:

mov edx, offset strSmall
jmp done

source_greater:

mov edx, offset strGreat

done:

call writestring

call Crlf
exit

main endp

end main

Example 2b: Compare two strings (with different sizes)

This example uses primitive string instructions to compare two strings with different
sizes.

include irvine32.inc

.data

2013-2014 4

source byte 'ameen'

target byte 'ameena'

strSmall byte "source is smaller",0

strGreat byte "source is greater",0

strEqual byte "both strings are equal",0

.code

main proc

cld ;clear the direction flag

mov esi, offset source

mov edi, offset target

mov ecx, lengthof source

mov eax, lengthof target ;EAX = length of target string
.if ecx > eax

mov ecx, eax

.endif

repe cmpsb ;compare the 2 arrays and stop at the

 ;first mismatch

jb source_smaller ;check last char in source and

ja source_greater ;last char in dest

.if eax < lengthof source ;if both chars are equal then

jmp source_greater ;check the length of each one

.elseif eax > lengthof source
jmp source_smaller

.else

mov edx, offset strEqual
jmp done

.endif

source_smaller:

mov edx, offset strSmall

jmp done

source_greater:

mov edx, offset strGreat

done:

call writestring

call Crlf
exit

main endp

end main

2013-2014 5

SCASB / SCASW / SCASD Instructions

Compare a value in AL/AX/EAX to a byte, word, or double word addressed by EDI
respectively. They are useful when looking for a single value in an array or a string.

Example 3: Sequential Search

This example uses string primitive instructions to search in a string for a given
character.

include irvine32.inc

.data
str1 byte "hello world",0

.code
main proc

cld

mov edi, offset

str1 mov al, 'w'
mov ecx, lengthof str1

repne scasb ;scan string till 'w' is found
jne not_found ;'w' is not found, jump to not_found label

;Otherwise, ecx has the index of that character but

reversed ;So, make eax = lengthof(str1) - ecx - 1

mov eax, lengthof str1 -
1 sub eax, ecx
jmp done

not_found:

mov eax, -1

done: ;eax has the index of the char OR -1 if not found call

writeint

exit

main endp

end main

STOSB / STOSW / STOSD Instructions

These instructions store the content of AL/AX/EAX into memory at the offset pointed
to by EDI. They are useful for filling all elements of a string or array with a single
value.

2013-2014 6

Example 4: Fill an array

This example uses string primitive instructions to initialize an array by a specific
value.

include irvine32.inc
.data

arr1 word 20 dup (?)

.code

main proc
cld
mov edi, offset arr1

mov ax, 5
mov ecx, lengthof arr1

rep stosw ;set all items in arr1 by AX value

exit

main endp
end main

LODSB / LODSW / LODSD Instructions

These instructions load a byte, word, or double word from memory at ESI into
AL/AX/EAX respectively. REP prefix is rarely used with them as each new value
loaded into accumulator overwrites its previous contents.

Example 5: Array Multiplier

This example uses string primitive instruction to multiply an array by a integer value.

include irvine32.inc

.data

arr1 dword 1, 2, 3, 4, 5
multiplier dword 10

.code
main proc

cld
mov esi, offset arr1 ;initialize ESI for LODSD instruction

mov edi, esi ;initialize EDI for STOSD instruction
mov ecx, lengthof arr1

l1:
lodsd ;mov eax, [esi]

mul multiplier ;edx:eax = eax * multiplier
stosd ;mov [edi], eax

2013-2014 7

loop l1

exit

main endp
end main

Two Dimensional Arrays

Multi-dimensional arrays in assembly are defined as single dimensional arrays. For
example, a 2D array can be defined as 1D array where rows are concatenated in a
single row. Accessing items in 2D arrays can be done by indirect memory
addressing mode using a base register and an index register like [ebx+esi]. In such
addressing mode, a base register (i.e. ebx) should contain the row offset while an
index register (i.e. esi) should contain the column offset.

Example 6: Sum a column

This example sums values in a column in a 2D integer array. Its idea is to iteratively
make ESI register points to the first item in each row, then calculate the offset of
the item in the targeted column and keep it in EBX register. Using base-index
addressing mode (i.e. [ESI+EBX]), we can access the targeted item.

include irvine32.inc

.data
table1 dword 1, 2, 3, 4

 dword 5, 6, 7, 8
 dword 9, 10, 11, 12
;the same as: table1 dword 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

ncol dword 4

.code
SumCol proto table: PTR DWORD, nrow:DWORD, ncol:DWORD,

icol:DWORD main proc
invoke SumCol, offset table1, 3, 4, 3

call

writeint

call CrLf

exit
main endp

SumCol proc table: PTR DWORD, nrows:DWORD, ncols:DWORD,

icol:DWORD push esi

2013-2014 8

push

ecx

push

ebx

push

edx

mov esi, table ;ESI: points to the begining of array (1st row)

mov ecx, nrows ;ECX: # of rows

mov edx, ncols

shl edx, 2 ;EDX: # of bytes in each row (ncols*4)

mov ebx, icol ;EBX: index of target column

mov eax, 0 ;EAX: accmulator for the result

l1:
add eax, [esi+4*ebx]
add esi, edx ;ESI: points to the next row

loop l1

pop edx

pop ebx

pop ecx

pop esi

ret

SumCol endp

end main

Assignment #5 :

1. Write a procedure named asm_strCat that concatenates a source string to the end

of a target string. Use string primitive instructions when is possible.

2. Write a procedure named asm_strFind that searches for a string inside a target

string and returns the first matching position if any. Use string primitive
instructions when is possible.

3. Write a procedure named asm_strRemove that removes n characters from a

string. This procedure should take a pointer to a string, the position in the string
where the character are to be removed and number of characters to be removed
n. Use string primitive instructions when is possible.

