
2013-2014 1

Assembly Language Lab 9

Macros: Definition and Invoke

A macro is a named block of assembly language statements. Once defined, it can be
called many times in the program. It is not like procedures. When it is called,
preprocessor of the assembler replace this call by the macro block of code. So, it
does not need to CALL or RET instructions as it is even preprocessed before
assembling. Macros should be defined before their use. They are often defined in the
beginning of source code file.

Macro definition:

macroname MACRO [parm1, parm2,…]

statement-list
ENDM

Example:

mPutChar MACRO char

push EAX
mov AL, char

call writeChar

pop EAX
ENDM

The name of this macro is mPutChar, and takes one parameter named char. This
macro prints the given character on the screen.

Invoking Macros

To invoke (call) a macro, just write its name followed by parameters values if any.

Example:

nPutChar ‘a’

nPutChar AL

When the preprocessor finds nPutChar, it copies macro’s code block and inserts this
block in the place of the macro invoke statement. Then it replaces parameters by the
values given in the invoke statement in the inserted block. So, the actual generated
code of the previous example is:

…
push EAX

mov AL, ‘a’ ;replace char parameter by ‘a’ call

writeChar
pop EAX

…
push EAX

2013-2014 2

mov AL, AL ;replace char parameter by AL call

writeChar
pop EAX

…

Example : WriteStr macro

This example defines a macro that prints string arrays on screen

include irvine32.inc

mWriteStr macro text ;Macro Definition

push edx

mov edx, offset text
call writestring
call CrLf

pop edx
endm

.data

str1 byte 'Hello world 1', 0

str2 byte 'Hello world 2', 0
.code

main proc

mWriteStr str1 ;Macro Invokes
mWriteStr str2
exit

main endp

end main

You can see the generated code for the previous main procedure in
disassembly window in VS Debugger as shown next:

Main proc

;mWriteStr

str1 push edx
mov edx, offset str1

call writestring

call CrLf
pop edx

;mWriteStr

str2 push edx
mov edx, offset str2

call writestring

call CrLf
pop edx

...
Main endp

2013-2014 3

Data definition in macros

A macro can include even data variables in its definition beside its code. But, it
should be preceded by LOCAL directive to tell the preprocessor to create a unique
label each time the macro invoked, otherwise this label will be redefined each time
the macro invoked causing assembling error.

Example : WriteText macro

This example defines a macro that prints string constants on screen

include irvine32.inc

mWriteText macro text

;string is local variable used in macro so preprocessor

will ;create a unique name each time the macro invoked
local str1

.data ;define a data segment to store passed text

;allocate the string array named by the str1 label

and ;initialized by the text parameter
str1 byte text, 0

.code ;define a code segement to print the string

 push edx

 mov edx, offset str1

 call writestring

 call crlf

 pop edx
endm

.data

.code
main proc

mWriteText 'hello world 1'

mWriteText 'hello world 2'

exit

main endp

end main

2013-2014 4

The generated code for the previous main procedure is shown next:

main proc

;mWriteText 'hello world 1'

.data
??0000 byte 'hello world 1', 0

.code
push edx

mov edx, offset ??0000

call writestring

pop edx

;mWriteText 'hello world 2'

.data
??0001 byte 'hello world 2', 0

.code
push edx

mov edx, offset ??0001

call writestring

pop edx

...
main endp

Note that ??0000 and ??0001 are valid labels, which are created by the preprocessor
to assure the labels uniqueness.

Exporting Assembly Code to High-level Language

As we know, we will not use assembly code to build large sophisticated project. It is
too hard to do so. Therefore, we have to know how to use assembly code in well-
known high-level languages to take the advantages of both. In next two sections, we
will show how to export our assembly code to a dynamic-linking library (.dll) to be
used in any other high level language.

1) Exporting Assembly Code to DLL Library

To export your code to a .dll library, there are minor changes to be made on the
skeleton program we use in generating normal .exe applications. This modified
skeleton is shown next:

2013-2014 5

.386
.model flat, stdcall

.data
;Write your static data, if any, here

.code
;Write your procedures to be exported here

DllMain PROC hInstance:DWORD,

fdwReason:DWORD, lpReserved:DWORD

mov eax, 1 ; Return true to caller. ret

DllMain ENDP

END DllMain

As shown above, it is not so different from the regular skeleton except that the entry
point procedure, DllMain. The DllMain procedure must be defined exactly as
specified to be able to link this code correctly. This constraint is required as Windows
assumes the existing of this function in any DLL library to be able load it and so we
defined it as Windows needs.

This DllMain function does not do anything except necessary initialization for loading
the library; it does not call any other procedures like normal applications. This comes
from the concept of the library. Library is just a collection of functions to be called
from other applications and so the DllMain function has nothing to do.

On the other hand, the assembler should know what procedures to export.
Consequently, you should write a separate definition file (.def) which contains
procedures names to be exported.

Example: First Assembly DLL library

This example demonstrates how to create a DLL library in assembly language. The
following is the assembly source code (main.asm):

include irvine32.inc

.data

;no static data
.code

Sum PROC int1:DWORD,

int2:DWORD mov eax, int1
add eax, int2

ret
Sum ENDP

2013-2014 6

SumArr PROC arr:PTR DWORD, sz:DWORD

push esi

push ecx

mov esi, arr

mov ecx, sz

mov eax, 0
sum_loop:

add eax, DWORD PTR [esi]

add esi, 4
loop sum_loop

pop ecx

pop esi

Ret

SumArr ENDP

ToUpper PROC str1:PTR BYTE, sz:DWORD

push esi

push ecx

mov esi, str1

mov ecx, sz
l1:

cmp byte ptr [esi], 'a'

jb skip
cmp byte ptr [esi], 'z'

ja skip
and byte ptr [esi], 11011111b

skip:

inc esi

loop l1

pop ecx

pop esi

ret
ToUpper ENDP

; DllMain is required for any DLL

DllMain PROC hInstance:DWORD, fdwReason:DWORD, lpReserved:DWORD

mov eax, 1 ; Return true to caller. ret

DllMain ENDP

END DllMain

2013-2014 7

The definition file (main.def) contains a list of names of exported procedures
combined with an ordinal number which specify the order of the procedure in the
library. Note that, if you did not fill this file, no function will be exported to the DLL
library. Also, you must write names of procedures exactly the same as defined in the
.asm file (and matching the letter case too). The following is the content of main.def
file to export the three functions defined in the source file (main.asm):

EXPORTS
Sum @1
SumArr @2
ToUpper @3

To build this DLL library, open the .NET project attached with this lab in the
DllProject_template folder. Copy and paste the source code shown here in main.asm
file and fill main.def file as specified and build the project. A DLL library will be
generated in Debug folder. You can use this DLL in any other high-level language and
use functions defined in it. We will demonstrate in the next section how to do so with
C#.

2) Importing DLL library into C#

Now, we shall explain how to use the generated DLL library in C# projects. Create a
new console C# application in VS. NET, and then write the following code:

using System;
using System.Collections.Generic;

using System.Text;
using System.Runtime.InteropServices;

namespace DllTest
{

class Program
{

[DllImport("Project.dll")]
private static extern int Sum(int y, int b);

[DllImport("Project.dll")]
private static extern int SumArr([In] int[] arr, int sz);

[DllImport("Project.dll")]
private static extern void ToUpper([In, Out] char[] arr, int sz);

static void Main(string[] args)
{

int[] x = { 1, 2, 3 };
char[] c = "How are u?".ToCharArray();

//test SumArr procedure

Console.Write(SumArr(x, x.Length));

//test ToUpper procedure

Console.Write(c, 0, c.Length);

ToUpper(c, c.Length);

Console.Write(c, 0, c.Length);

}
}

}

2013-2014 8

To compile this code, you should put the Project.dll file in the bin\debug folder of
your C# project (beside the .exe file) or you should write the full path of the DLL file
within DllImport.

Note that you need to choose accurate parameter type when using DllImport
otherwise function will not work probably and may cause errors. For more
information, you can read about “Interop Marshaling” in MSDN library.

Assignment #6 (Bonus):

1. Write a macro with format ReadInt32 dest that reads an integer from user and
returns the input integer in the dest parameter.

2. Write a macro with format MULT dest, src that multiplies 32-bit source and

destination operands and put result in destination.

