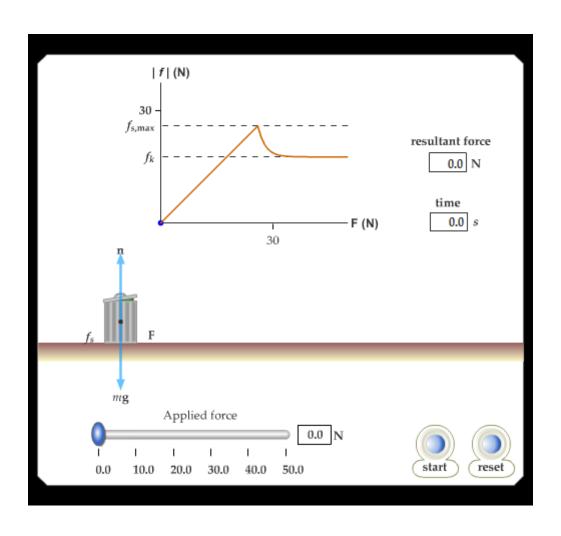


<u> EQuickuiz</u>


A person pulls a box across the floor. Which is the correct analysis of the situation?

- A. The box moves forward because the person pulls forward slightly harder on the box than the box pulls backward on the person.
- B. Because action always equals reaction, the person cannot pull the box- the box pulls backward just as hard as the person pulls forward, so there is no motion.
- C. The person gets the box to move by giving it a tug during which the force on the box is momentarily greater than the force exerted by the box on the person.
- D. The person's force on the box is as strong as the force of the box on the person, but the frictional force on the person is forward and large while the backward frictional force on the box is small.

World's Strongest Man

Static vs. Kinetic Friction

Static vs. Kinetic Friction

• Static friction force f_S acts to **prevent the object** from moving:

$$f_S \leq \mu_S N$$

- μ_S is called the coefficient of static friction
- While kinetic friction force f_k starts acting after the object starts moving and opposes its motion:

$$f_k = \mu_k N$$

- Notice that the coefficient of kinetic friction μ_k is not necessarily equal to μ_s .
- Notice also that these coefficients have no units.

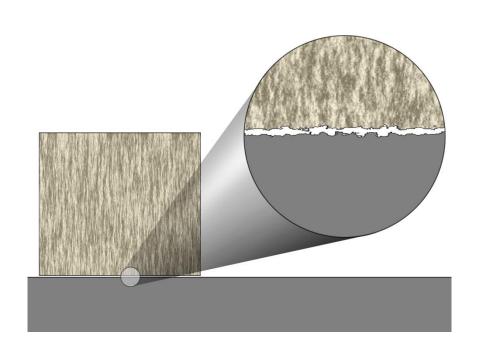
Static vs. Kinetic Friction

 Further exploration can be done using a PhET simulation called Force and Motion accessible here:

http://phet.colorado.edu/en/simulation/forces-and-motion

EQuickuiz

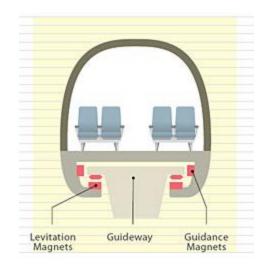
A crate lying on a flat linoleum floor has a coefficient of static friction $\mu_s=0.5$, coefficient of kinetic friction $\mu_k=0.25$ and a mass of 40.0 kg. What will the net horizontal force on the crate be if you push on it horizontally with a force of +100.0 N? Use g=10.0 m/s² (If the crate starts moving, give the net force after it has started moving.)


A.
$$+100.0 \text{ N}$$

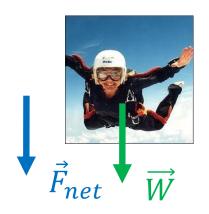
B.
$$-100.0 \text{ N}$$

D.
$$+200.0 \text{ N}$$

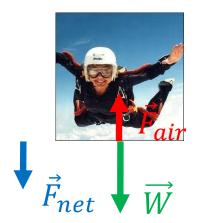
$$f_s \le \mu_s N$$
, $f_k = \mu_k N$
 $N = mg = 400. N$
 $f_s \le 0.5 \times 400. N$
 $f_s \le 200. N$
 $f_k = 0.25 \times 400. = 100. N$


Friction is a Dissipative Force

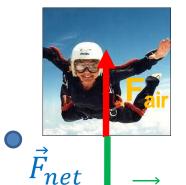
Motion without Friction



Air Resistance


An object moving in a fluid (liquid or gas) will experience a drag force that will slow down its motion

The result is a terminal velocity reached when the net force is zero



$$|\vec{F}_{net}| = |\overrightarrow{W}|$$

$$|\vec{F}_{air}| = \alpha v^2$$

$$\vec{F}_{net} = \vec{W} + \vec{F}_{air}$$
$$|\vec{F}_{net}| < |\vec{W}|$$

$$\vec{F}_{net} = \vec{W} + \vec{F}_{air} = 0$$