

CSE 468/568: Robotics Algorithms

Extended Kalman Filter and Particle Filters Karthik Dantu kdantu@buffalo.edu

Some slides adopted from USC, Thrun book, ETH, and others

1-D Kalman Filter

$$\begin{aligned} x_t &= x_{t-1} + u_t + \varepsilon_t \\ z_t &= x_t + \delta_t \end{aligned}$$

 $\varepsilon_t = N(\mu_1, \sigma_1^2)$ $\delta_t = N(\mu_2, \sigma_2^2)$

- State transition linear in motion variables
- Measurement linear in state
- Motion and measurement noise are Gaussian

Example: Simple 1D Linear System

Given: u=0 Initial state estimate = 0 Linear System:

 $x_{t+1} = x_t + w_t$ $z_{t+1} = x_{t+1} + n_{t+1}$

State Estimate

State Estimate With Bad Initialization

Kalman Filter Summary

 Highly Efficient: Polynomial in measurement dimensionality k and state dimensionality n: O(k^{2.376} + n²)

Optimal for linear Gaussian systems

Linearity Assumption

- Most systems of interest not linear
- To model such systems, a linear process model needs to be generated out of the non-linear dynamics
- Extended Kalman Filter is a method by which state propagation equations and sensor models can be linearized about the current estimate
- Linearization increases state error residual since it is not the best estimate

Nonlinear Dynamic Systems

Realistic robots involve non-linear functions

$$x_t = g(u_t, x_{t-1})$$

$$z_t = h(x_t)$$

Linearity Assumption

Non-Linear Function

EKF Linearization (1)

EKF Linearization (2)

EKF Linearization (3)

EKF Linearization: First Order Taylor Series Expansion

Prediction

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$
$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + G_{t} (x_{t-1} - \mu_{t-1})$$

Correction

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$

EKF Summary

- Highly efficient: Polynomial in measurement dimensionality k and state dimensionality n: O(k^{2.376} + n²)
- Not optimal !
- Can diverge if nonlinearities are large
- Works surprisingly well even when all assumptions are violated

Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Inherently represents multiple hypotheses
- Storage overhead: typically state is represented using one to few thousands of particles
- Compare that to mean, variance in a Kalman filter
- Computing correspondingly expensive as well because we have to move all the state forward

Importance Sampling

Importance Sampling (2)

Importance Sampling (3)

Particle Filter Example

p(s)

University at Buffalo The State University of New York | REACHING OTHERS

Sensor Information: Importance Sampling

Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x | u, x') Bel(x') dx'$$

University at Buffalo The State University of New York REACHING OTHERS

Sensor Information: Importance Sampling

$$Bel^{-}(x) \leftarrow \int p(x | u, x') Bel(x') dx$$

