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1-D Kalman Filter 

•   State transition linear in motion variables 
•  Measurement linear in state 
•  Motion and measurement noise are Gaussian 
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xt = xt−1 +ut +εt
zt = xt +δt

εt = N(µ1,σ1
2 )

δt = N(µ2,σ 2
2 )



Example: Simple 1D Linear System 
Given: u=0 
Initial state estimate = 0 
Linear System:  
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State Estimate 



State Estimate With Bad Initialization 



Kalman Filter Summary 

•  Highly Efficient: Polynomial in measurement 
dimensionality k and state dimensionality n: 

   O(k2.376 + n2)  

•  Optimal for linear Gaussian systems 



Linearity Assumption 

•  Most systems of interest not linear 
•  To model such systems, a linear process model needs to 

be generated out of the non-linear dynamics 
•  Extended Kalman Filter is a method by which state 

propagation equations and sensor models can be 
linearized about the current estimate 

•  Linearization increases state error residual since it is not 
the best estimate 



Nonlinear Dynamic Systems 
•  Realistic robots involve non-linear functions 
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Linearity Assumption  



Non-Linear Function 



EKF Linearization (1) 



EKF Linearization (2) 



EKF Linearization (3) 



EKF Linearization: First Order 
Taylor Series Expansion 

Prediction 
 
 
 
 
Correction 
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EKF Summary 

•  Highly efficient: Polynomial in measurement 
dimensionality k and state dimensionality n: 

   O(k2.376 + n2)  
•  Not optimal ! 
•  Can diverge if nonlinearities are large 
•  Works surprisingly well even when all assumptions are 

violated 



Particle Filters 
•  Represent belief by random samples 
•  Estimation of non-Gaussian, nonlinear processes 
•  Inherently represents multiple hypotheses 
•  Storage overhead: typically state is represented using 

one to few thousands of particles  
•  Compare that to mean, variance in a Kalman filter 
•  Computing correspondingly expensive as well because we 

have to move all the state forward 



Importance Sampling 



Importance Sampling (2) 



Importance Sampling (3) 



Particle Filter Example 



Sensor Information: Importance Sampling 
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Robot Motion 
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Sensor Information: Importance Sampling 
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Robot Motion 
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