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Homework Assignment #1

Due date: 2/6/14, in class.

Exercise 1 (Rank and nullspace) Consider the image in Figure 1, a gray-scale rendering
of a painting by Mondrian (1872-1944). We build a 256 × 256 matrix A of pixels based on

Figure 1: A gray-scale rendering of a painting by Mondrian.

this image by ignoring grey zones, assigning +1 to horizontal or vertical black lines, +2 at
the intersections, and zero elsewhere. The horizontal lines occur at row indices 100, 200 and
230, and the vertical ones, at columns indices 50, 230.

1. What is nullspace of the matrix?

2. What is its rank?

Exercise 2 (Interpretation of covariance matrix) We are givenm data points x(1), . . . , x(m)

in Rn, and denote by Σ the sample covariance matrix:

Σ
.
=

1

m

m∑
i=1

(x(i) − x̂)(x(i) − x̂)>,

where x̂ ∈ Rn is the sample average of the points:

x̂
.
=

1

m

m∑
i=1

x(i).
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We assume that the average and variance of the data projected along a given direction does
not change with the direction. In this exercise we will show that the sample covariance
matrix is then proportional to the identity.

We formalize this as follows. To a given normalized direction w ∈ Rn, ‖w‖2 = 1, we associate
the line with direction w passing through the origin, L(w) = {tw : t ∈ R}. We then consider
the projection of the points x(i), i = 1, . . . ,m, on the line L(w), and look at the associated
coordinates of the points on the line. These projected values are given by

ti(w)
.
= arg min

t
‖tw − x(i)‖2, i = 1, . . . ,m.

We assume that for any w, the sample average t̂(w) of the projected values ti(w), i = 1, . . . ,m,
and their sample variance σ2(w), are both constant, independent of the direction w. Denote
by t̂ and σ2 the (constant) sample average and variance. Justify your answer to the following
questions as carefully as you can.

1. Show that ti(w) = w>x(i), i = 1, . . . ,m.

2. Show that the sample average x̂ of the data points is zero.

3. Show that the sample covariance matrix Σ of the data points is of the form σ2In. Hint:
the largest eigenvalue λmax of the matrix Σ can be written as: λmax = maxw {w>Σw :
w>w = 1}, and a similar expression holds for the smallest eigenvalue.

Exercise 3 (Latent semantic indexing) Latent semantic indexing is an SVD-based tech-
nique that can be used to discover text documents similar to each other. Assume that we
are given a set of m documents D1, . . . , Dm. Using a “bag-of-words” technique described in
Section 2.1 of the hyper-textbook, we can represent each document Dj is described by an
n-vector dj, where n is the total number of distinct words appearing in the whole corpus. In
this exercise, we assume that the vectors dj are constructed as follows: dj(i) = 1 if word i
appears in document Dj, and 0 otherwise. We refer to the n×m matrix M = [d1, . . . , dm] as
the “raw” term-by-document matrix. We will also use a normalized version of that matrix:
M̃ = [d̃1, . . . , d̃m], where d̃j = dj/‖dj‖2, j = 1, . . . ,m. (In practice, other numerical repre-
sentation of text documents can be used. For example we may use the relative frequencies
of words in each document, instead of the l2-norm normalization employed here.)

Assume we are given another document, referred to as the “query document,” which is not
part of the collection. We describe that query document as a n-dimensional vector q, with
zeros everywhere, except a 1 at indices corresponding to the terms that appear in the query.
We seek to retrieve documents that are “most similar” to the query, in some sense. We
denote by q̃ the normalized vector q̃ = q/‖q‖2.

1. A first approach is to select the documents that contain the largest number of terms
in common with the query document. Explain how to implement this approach, based
on a certain matrix-vector product, which you will determine.
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2. Another approach is to find the closest document by selecting the index j such that
‖q − dj‖2 is the smallest. This approach can introduce some biases, if for example
the query document is much shorter than the other documents. Hence a measure of
similarity based on the normalized vectors, ‖q̃ − d̃j‖2, has been proposed, under the
name of “cosine similarity”. Justify the use of this name for that method, and provide
a formulation based on a certain matrix-vector product, which you will determine.

3. Assume that the normalized matrix M̃ has an SVD M̃ = UΣV >, with Σ a n × m
matrix containing the singular values, and the unitary matrices U = [u1, . . . , un], V =
[v1, . . . , vm] of size n× n, m×m respectively. What could be an interpretation of the
vectors ul, vl, l = 1, . . . , r? Hint: discuss the case when r is very small, and the vectors
ul, vl, l = 1, . . . , r, are sparse.

4. With real-life text collections, it is often observed that M is effectively close to a low-
rank matrix. Assume that a optimal rank-k approximation (k � min(n,m)) of M̃ ,
M̃k, is known. In the Latent Semantic Indexing approach1 to document similarity,
the idea is to first project the documents and the query onto the sub-space generated
by the singular vectors u1, . . . , uk, and then apply cosine similarity approach to the
projected vectors. Find an expression for the measure of similarity.

Exercise 4 (Projections and PCA Computation) The dataset for this problem con-
sists of the votes of n = 100 Senators in the 2004-2006 US Senate for a total of m = 542
bills. Yay (Yes) votes are represented as 1’s, Nay (No) as -1’s, and the other votes are
recorded as 0.

The file senate.mat contains the data with the matrix of votes M ∈ Rm×n.

1. Perform an SVD on the data (make sure to center the data first).

(a) Plot the singular values and comment.

(b) Plot the explained variance and comment.

2. In machine learning and statistics, PCA can also be used to reduce the dimensionality
of problem while still retaining most of the “information”. For n observations and p
covariates, this can be a useful speed-up when n << p and the complexity of training
a model increases primarily with p.

In the following exercises, we look at how reductions to dimensions of size 1 and 2 can
also be helpful in visualizing data and giving an intuition about its structure.

(a) Project the data onto the line with maximal variance. Describe the procedure to
do this, plot the results and discuss.

1In practice, it is often observed that this method produces better results than cosine similarity in the
original space, as in part 2.
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(b) Project the data onto the two-dimensional plane with a view that has the largest
variance by mapping points x→ Πx where Π = [u1 u2]

T is a matrix that contains
the singular vectors corresponding to the first two singular values. Describe the
procedure to do this, plot the results and discuss.
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