
EE 127
L. El Ghaoui

3/18/14

Homework Assignment #4

Due date: 4/15/14, in class.

Exercise 1 (Boolean least-squares) Consider the following problem, known as Boolean
Least Squares :

φ = min
x
‖Ax− b‖22 : xi ∈ {−1, 1}, i = 1, . . . , n.

Here, the variable is x ∈ Rn, where A ∈ Rm,n and b ∈ Rm are given. This is a basic problem
arising, for instance, in digital communications. A brute force solution is to check all 2n

possible values of x, which is usually impractical.

1. Show that the problem is equivalent to

φ = min
X,x

Tr(A>AX)− 2b>Ax+ b>b

s.t. X = xx>,

Xii = 1, i = 1, . . . , n,

in the variables X = X> ∈ Rn,n and x ∈ Rn.

2. The constraint X = xx>, i.e., the set of rank-1 matrices is not convex, therefore the
problem is still hard. However, an efficient approximation can be obtained by relaxing
this constraint to X � xx>, obtaining

φ ≥ φsdp = min
X

Tr(A>AX)− 2b>Ax+ b>b

s.t.

[
X x
x> 1

]
� 0,

Xii = 1, i = 1, . . . , n.

The relaxation produces a lower-bound to the original problem. Once that is done, an
approximate solution to the original problem can be obtained by rounding the solution:
xsdp = sgn(x∗), where x∗ is the optimal solution of the semidefinite relaxation.

3. Another approximation method is to relax the non-convex constraints xi ∈ {−1, 1} to
convex interval constraints −1 ≤ xi ≤ 1 for all i, which can be written ‖x‖∞ ≤ 1.
Therefore a different lower bound is given by:

φ ≥ φint
.
= min ‖Ax− b‖22 : ‖x‖∞ ≤ 1.

Once that problem is solved, we can round the solution by xint = sgn (x∗) and compare
the original objective value ‖Axint − b‖22.
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4. Which one of φsdp and φint produces the closest approximation to φ? Justify carefully
your answer.

5. Use now 100 independent realizations with normally distributed data, A ∈ R10,10 (inde-
pendent entries with mean zero) and b ∈ R10 (independent entries with mean 1). Plot
and compare the histograms of ‖Axsdp − b‖22 of part 2, ‖Axint − b‖22 of part 3, and the
objective corresponding to a näıve method ‖Axls− b‖22, where xls = sgn

(
(A>A)−1A>b

)
is the rounded ordinary Least Squares solution. Briefly discuss accuracy and compu-
tation time (in seconds) of the three methods.

6. Assume that, for some problem instance, the optimal solution (x,X) found via the
SDP approximation is such that x belongs to the original non-convex constraint set
{x : xi ∈ {−1, 1}, i = 1, . . . , n}. What can you say about the SDP approximation in
that case?

Exercise 2 (Non-negativity of polynomials) A second-degree polynomial with values
p(x) = y0 + y1x+ y2x

2 is non-negative everywhere if and only if

∀ x :

[
1
x

]> [
y0 y1/2
y1/2 y2

] [
1
x

]
≥ 0,

which in turn can be written as an LMI in y = (y0, y1, y2):[
y0 y1/2
y1/2 y2

]
� 0.

In this exercise, you show a more general result, which applies to any polynomial of even
degree 2k (polynomials of odd degree can’t be non-negative everywhere). To simplify, we
only examine the case k = 2, that is, fourth-degree polynomials; the method employed here
can be generalized to k > 2.

1. Show that a fourth-degree polynomial p is non-negative everywhere if and only if it is
a sum of squares, that is, it can be written as

p(x) =
4∑

i=1

qi(x)2,

where qi’s are polynomials of degree at most two. Hint: show that p is non-negative
everywhere if and only if it is of the form

p(x) = p0
(
(x− a1)2 + b21

) (
(x− a2)2 + b22

)
,

for some appropriate real numbers ai, bi, i = 1, 2, and some p0 ≥ 0.
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2. Using the previous part, show that if a fourth-degree polynomial is a sum of squares,
then it can be written as

p(x) =
[

1 x x2
]
Q

 1
x
x2

 . (1)

for some positive-semidefinite matrix Q.

3. Show the converse: if a positive semi-definite matrix Q satisfies condition (1) for every
x, then p is a sum of squares. Hint: use a factorization of Q of the form Q = AA>, for
some appropriate matrix A.

4. Show that a fourth-degree polynomial p(x) = y0 + y1x + y2x
2 + y3x

3 + y4x
4 is non-

negative everywhere if and only if there exist a 3× 3 matrix Q such that

Q � 0, yl =
∑
i+j=l

Qi+1,j+1, l = 0, . . . , 4.

Hint: equate the coefficients of the powers of x in the left and right sides of equation (1).

Exercise 3 (Design of a water reservoir) We need to design a water reservoir for water
and energy storage, as depicted in Figure 1.

The concrete basement has square section of side length b1 and height h0, while the reservoir
itself has square section of side length b2 and height h. Some useful data is reported in
Table 1.

The critical load limit Ncr of the basement should withstand at least twice the weight of
water. The structural specification h0/b

2
1 ≤ 35 should hold. The form factor of the reservoir

should be such that 1 ≤ b2/h ≤ 2. The total height of the structure should be no larger than
30 m. The total weight of the structure (basement plus reservoir full of water) should not
exceed 9.8×105 N. The problem is to find the dimensions b1, b2, h0, h such that the potential
energy Pw of the stored water is maximal (assume Pw = (ρwhb

2
2)h0). Explain if and how the

problem can be modeled as a convex optimization problem and, in the positive case, find
the optimal design.
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Figure 1: A water reservoir on concrete basement.

Quantity Value Units Description
g 9.8 m/s2 gravity acceleration
E 30× 109 N/m2 basement long. elasticity modulus
ρw 10× 103 N/m3 specific weight of water
ρb 25× 103 N/m3 specific weight of basement
J b41/12 m4 basement moment of inertia
Ncr π2JE/(2h0)

2 N basement critical load limit

Table 1: Data for reservoir problem.

4



Exercise 4 (Image deformation) A rigid transformation is a mapping from Rn to Rn

that is the composition of a translation and a rotation. Mathematically, we can express a
rigid transformation φ as φ(x) = Rx+ r, where R is an n×n orthogonal transformation and
r ∈ Rn a vector.

We are given a set of pairs of points (xi, yi) in Rn, i = 1, . . . ,m, and wish to find a rigid
transformation that best matches them. We can write the problem as

min
R∈Rn,n, r∈Rn

m∑
i=1

‖Rxi + r − yi‖22 : R>R = In, (2)

where In is the n× n identity matrix.

The problem arises in image processing, to provide ways to deform an image (represented
as a set of two-dimensional points) based on the manual selection of a few points and their
transformed counterparts.

Figure 2: Image deformation via rigid transformation. The image on the left is the original
image, and that on the right is the deformed image. Yellow dots indicate points for which
the deformation is chosen by the user.

1. Assume that R is fixed in problem (2). Express an optimal r as a function of R.
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2. Show that the corresponding optimal value (now a function of R only) writes as the
original objective function, with r = 0 and xi, yi replaced with their centered counter-
parts,

x̄i = xi − x̂, x̂ =
1

m

m∑
j=1

xj, ȳi = yi − ŷ, ŷ =
1

m

m∑
j=1

yj.

3. Show that the problem can be written as

min
R
‖RX − Y ‖F : R>R = In,

for appropriate matrices X, Y , which you will determine. Hint: explain why you can
square the objective; then expand.

4. Show that the problem can be further written as

max
R

TrRZ : R>R = In,

for an appropriate n× n matrix Z, which you will determine.

5. Show that R = V U> is optimal, where Z = USV > is the SVD of Z. Hint: reduce the
problem to the case when Z is diagonal, and use without proof the fact that when Z
is diagonal, In is optimal for the problem.

6. Show the result you used in the previous question: assume Z is diagonal, and show
that R = In is optimal for the problem above. Hint: show that R>R = In implies
|Rii| ≤ 1, i = 1, . . . , n, and using that fact, prove that the optimal value is less than
or equal to TrZ.

7. How woud you apply this technique to make Mona Lisa smile more? Hint: in Figure 2,
the two-dimensional points xi are given (as yellow dots) on the left panel, while the
corresponding points yi are shown on the left panel. These points are manually selected.
The problem is to find how to transform all the other points in the original image.
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