
CIS 551 - Computer and Network Security Assignment #1 - Buffer
Overflows

Consider the following program, which we might call badbuf.c:

#include <stdio.h>

int match(char *s1, char *s2) {

while( *s1 != ’\0’ && *s2 != 0 && *s1 == *s2 ){

s1++; s2++;

}

return( *s1 - *s2 );

}

void welcome(char *str) { printf(str); }

void goodbye(char *str) { void exit(); printf(str); exit(1); }

main(){

char name[128], pw[128]; /* passwords are short! */

char *good = "Welcome to The Machine!\n";

char *evil = "Invalid identity, exiting!\n";

printf("login: "); scanf("%s", name);

printf("password: "); scanf("%s", pw);

if( match(name,pw) == 0 )

welcome( good );

else

goodbye(evil );

}

Here is your assignment:

• Part 1: (due before class Feb. 3rd) Control (25 points) Use a buffer overflow attack on this

program so that it prints the welcome message for name != pw.

• Part 2: (due before class Feb. 10th) Data payload (25 points) Enhance your buffer overflow

attack so that the program prints ‘‘0wnz U!’’.

• Part 3: (due before class Feb. 17th) General payload (50 points) Further enhance your

buffer overflow attack so that /bin/sh is executed and provides the attacker interactive access

to the system on which badbuf is executing.

Turn in all source code used, including test cases and payload creation software. Turn in a demon-

stration log captured on a speclab machine using the Linux script command and run on an

unmodified badbuf. Do not turn in executables. We suggest including a makefile so we can repro-

duce your setup - see make(1)) in the Linux documentation accessible by typing in man make at the

command prompt. The easiest way to submit is to create a “tarball” with the Linux tar(1) com-

mand and submit the tarball using the turnin command on eniac.seas.upenn.edu. If needed,

more details may be posted on Piazza, so stay tuned!



Advice:

• The assignment is tough, but feasible. Start early! If you finish one part early, begin building

up skills for the next part - it takes a lot of experimentation.

• Read http://insecure.org/stf/smashstack.html for a readable introduction to the basic

techniques.

• The speclab machines status is viewable at:

http://www.seas.upenn.edu/cets/checklab/index.php?lab=speclab.

• These are 64-bit machines so Aleph One’s 32-bit code will not work. The general techniques

are still applicable.

• The speclab machines are configured without stack randomization; to allow execution of code

on the stack various assembler or link time flags can be set - see

http://linux.die.net.man/8/execstack.

• Contact the course TAs, Hanjun Xiao - hanjunx at cis.upenn.edu, Sahil Hirpara - sahilh at

seas.upenn.edu, or Yuanjie Qu - yuanjieq at seas.upenn.edu, if you have any questions;

they know the principles and the practice.


