ClS551: Computer and
Network Security

Jonathan M. Smith
Ims@cis.upenn.edu
02/10/2014

ClIS551 Topics

« Computer Security
— Software/Languages, Computer Arch.
— Access Control, Operating Systems
— Threats: Vulnerabilities, Viruses

 Computer Networks
— Physical layers, Internet, WWW, Applications
— Cryptography in several forms
— Threats: Confidentiality, Integrity, Availability
* Systems Viewpoint
— Users, social engineering, insider threats

Sincoskie NIS model

USER
)
m
APPLICATION x
(=,
NETWORK
<<
OPERATING SYSTEM
COMPUTER HARDWARE

W.D. Sincoskie, et al. “Layer Dissonance and Closure in Networked
Information Security” (white paper)

Layer # Machine 1 Machine 2
7 iAppIication j(- . - >ZAppIication
6 ZPresent’n j<- . >iPresent’n
5 fSession \<- . >(Session
;
3 iNetwork j<- . >\Network)
2 iLink < . >iLink
: iPhysicaI j(—)iPhysicaI

/-layer OSI| network model

Applications vs. Networks

Application
Requirements

Network
Characteristics

Reliable, Ordered, Single-Copy
Message Delivery

Drops, Duplicates and Reorders
Messages

Arbitrarily large messages

Finite message size

Flow Control by Receiver

Arbitrary Delay

Supports multiple applications
per-host

I nte rn etWO rkS (diagram from Peterson & Davie)

H1 H2 H3 | Ethernet Ethernet
#
‘ H7 R3 H8
R1

H4 Point-to-Point
Link (e.g., ISDN)

FDDI Token Ring

HG6

H5

I nte rn etWO rkS (diagram from Peterson & Davie)

_ H3 Ethernet Ethernet
. >
H7 | WR3 8
R1
H4 Point-to-Point

Link (e.g., ISDN)

Comem="5

™~

HG6

H5

Transport IS host-host (diagram: Peterson & Davie)

H1 H8
TCP R1 R2 R3 TCP
ETH ETH | | FDDI FDDI | | PPP PPP | | ETH ETH

Transport protocols are end-to-end

Transport: “end-to-end” services

» User Datagram Protocol
— Best-effort packet service
— Thin overlay on basic IP service
— Used by many “real-time” services

* Transmission Control Protocol
— “virtual circuit” protocol
— Reliable bytestream

o Start with UDP, but focus on TCP/IP

User Datagram Protocol (UDP)

SrcPort DestPort
Length | Checksum
IP Packet Data

* Minimalist transport-layer protocol

— Exposes IP packet functionality to application
level

— Ports identify sending/receiving process
« De-multiplexing information
* (port, host) pair identifies a network process

UDP End-to-End Model

* Multiplexing/Demultiplexing with Port
number

UDP Sender UDP Receiver

(Multiplexer)

(Demultiplexer)

.

Using Ports

» Client contacts Server at a well-known port
— SMTP: port 25
— DNS: port 53
— POP3: port 110
— Unix talk : port 517
— In Unix, ports are listed in /etc/services

« Sometimes Client and Server agree on a
different port for subsequent communication

* Ports are an abstraction
— Implemented differently on different OS’ s
— Typically a message queue

Virtual Circuit model

* Reliable, ordered bytestream

— Problem: network (IP) is best-effort, so no
guarantees of delivery, ordering, path, etc.

* Transmission Control Protocol:
— Sequence numbers (for ordering)
— Acknowledgements/retry (for reliability)
— Controlled delays given up for reliability

Transmission Control Protocol (TCP)

Most widely used protocol for reliable
byte streams

— Reliable, in-order delivery of stream of bytes

— Full duplex: pair of streams, one in each
direction

— Flow and congestion control mechanisms
— Like UDP, supports ports

» Built on top of IP (hence “TCP/IP” usage)

TCP End-to-End Model

» Buffering trades delays for losses/errors

Recej
ceive B

Applications use sockets

* Descriptors that provide access to the

protocol, e.g.
sockfd = socket(AF INET, SOCK STREAM, 0);

« Read/write access
 Resembles UNIX pipe IPC mechanism
* Port number — rendezvous for app — e.qg.

servaddr.sin family = AF INET;
servaddr.sin port = htons(CIS551 PORT);
connect(sockfd, (SA *) &servaddr, sizeof(servaddr))

TCP Packet Format

— SYN

— FIN 0 15 31
— RESET

_ PUSH SrcPort DstPort

— URG SequenceNum

— ACK Acknowledgment

HL| O [Flags Advert.Wind.

Checksum UrgPtr

Options (variable)

DATA

Passive open Close

CLOSED

A

Active open/SYN

Y

LISTEN

SYN/SYN + ACK Send/SYN
SYN/SYN + ACK '
SYN_RCVD |= SYN_SENT
ACK SYN + ACK/ACK
Close[FIN ESTABLISHED
y Close[FIN FIN/ACK
FIN_WAIT_1 CLOSE_WAIT
FIN/ACK .
ACK ‘ Close/ FIN
Y Y
FIN_WAIT_2 CLOSING LAST_ACK
v ACK Timeour after two v ACK
FIN/ACK segment lifetimes
» TIME_WAIT » CLOSED

TCP Receliver

Maintains a buffer from which
application reads

Advertises < buffer size as the window
for sliding window

Responds with Acknowledge and
AdvertisedWindow on each send;
updates byte counts when data O.K.

Application blocked until read() O.K.

TCP Sender

* Maintains a buffer; sending application
IS blocked until room in buffer for write

* Hold data until acknowledged by
receiver (ACK) as successfully received

* Implement window expansion and
contraction; note difference between
flow and congestion control

TCP Flow & Congestion Control

* Flow vs. Congestion Control

— Flow control protects the recipient from
being overwhelmed

— Congestion control protects the network
from being overwhelmed

 TCP Congestion Control
— Additive Increase / Multiplicative Decrease
— Slow Start
— Fast Retransmit and Fast Recovery

Increase and Decrease

A value (CongestionWindow) is used to
control the number of unacknowledged
transmissions.

This value is increased linearly until timeouts
for ACKs are missed.

When timeouts occur, CongestionWindow
Is decreased by half to reduce the pressure
on the network quickly.

Hence “additive increase / multiplicative
decrease”.

TCP “sawtooth” pattern

Packet drop

Receiver limit
M (flow control)

Mbps

Available capacity /

Time

Slow Start

Sending the entire window immediately
could cause a traffic jam in the network
Begin “slowly” by setting the
congestion window to one packet.

When acknowledgements arrive, double
the congestion window.

Continue until ACKs do not arrive (i.e.,
congestion), or flow control dominates

Network Vulnerabilities

Anonymity

— Attacker is remote, origin can be disguised

— Authentication

Many points of attack

— Attacker only needs to find weakest link

— Attacker can mount attacks from many machines
Sharing

— Many, many users sharing resources
Complexity

— Distributed systems are large and heterogeneous
Unknown perimeter

Unknown attack paths

Syn Flood Attack

« TCP’s 3-way handshake:
— SYN - SYN+ACK --- ACK
« Receiver must maintain a queue of partially open TCP connections
— Called SYN_RECYV connections
— Finite resource (often small: e.g. 20 entries)
— Timeouts for queue entries are about 1 minute.
« Attacker
— Floods a machine with SYN requests
— Never ACKs them
— Spoofs the sending address

