
CIS551: Computer and
Network Security

Jonathan M. Smith
jms@cis.upenn.edu

02/10/2014

CIS551 Topics
•  Computer Security

– Software/Languages, Computer Arch.
– Access Control, Operating Systems
– Threats: Vulnerabilities, Viruses

•  Computer Networks
– Physical layers, Internet, WWW, Applications
– Cryptography in several forms
– Threats: Confidentiality, Integrity, Availability

•  Systems Viewpoint
– Users, social engineering, insider threats

Sincoskie NIS model

W.D. Sincoskie, et al. “Layer Dissonance and Closure in Networked
Information Security” (white paper)

You are here

7-layer OSI network model

Application

Present’n

Session

Transport

Network

Link

Physical

Application

Present’n

Session

Transport

Network

Link

Physical

Machine 1 Machine 2 Layer #

7

1

2

6

5

4

3

Applications vs. Networks

Internetworks (diagram from Peterson & Davie)

FDDI Token Ring

H5

H4

H6

H3 H2 H1

H8 H7

R2

R1

R3

Ethernet

Point-to-Point
Link (e.g., ISDN)

Ethernet

Internetworks (diagram from Peterson & Davie)

FDDI Token Ring

H5

H4

H6

H3 H2 H1

H8 H7

R2

R1

R3

Ethernet

Point-to-Point
Link (e.g., ISDN)

Ethernet

 Transport is host-host (diagram: Peterson & Davie)
H1

TCP

IP

ETH

TCP

IP

ETH

IP

ETH FDDI

IP IP

H8

R1 R2 R3

FDDI PPP PPP ETH

Transport protocols are end-to-end

Transport: “end-to-end” services

•  User Datagram Protocol
– Best-effort packet service
– Thin overlay on basic IP service
– Used by many “real-time” services

•  Transmission Control Protocol
–  “virtual circuit” protocol
– Reliable bytestream

•  Start with UDP, but focus on TCP/IP

User Datagram Protocol (UDP)

•  Minimalist transport-layer protocol
– Exposes IP packet functionality to application

level
– Ports identify sending/receiving process

•  De-multiplexing information
•  (port, host) pair identifies a network process

SrcPort DestPort
Length Checksum

IP Packet Data

0 16 31

UDP End-to-End Model
•  Multiplexing/Demultiplexing with Port

number

UDP Sender
(Multiplexer)

UDP Receiver
(Demultiplexer)

Application Application
Application Application

Using Ports
•  Client contacts Server at a well-known port

– SMTP: port 25
– DNS: port 53
– POP3: port 110
– Unix talk : port 517
–  In Unix, ports are listed in /etc/services

•  Sometimes Client and Server agree on a
different port for subsequent communication

•  Ports are an abstraction
–  Implemented differently on different OS’s
– Typically a message queue

Virtual Circuit model

•  Reliable, ordered bytestream
– Problem: network (IP) is best-effort, so no

guarantees of delivery, ordering, path, etc.
•  Transmission Control Protocol:

– Sequence numbers (for ordering)
– Acknowledgements/retry (for reliability)
– Controlled delays given up for reliability

Transmission Control Protocol (TCP)

•  Most widely used protocol for reliable
byte streams
– Reliable, in-order delivery of stream of bytes
– Full duplex: pair of streams, one in each

direction
– Flow and congestion control mechanisms
– Like UDP, supports ports

•  Built on top of IP (hence “TCP/IP” usage)

TCP End-to-End Model
•  Buffering trades delays for losses/errors

Application Application
Application Application

TCP Sender:
Send Buffers

TCP Receiver
Receive Buffers

segment segment
segment

segment

Applications use sockets
•  Descriptors that provide access to the

protocol, e.g.
sockfd = socket(AF_INET, SOCK_STREAM, 0);!

•  Read/write access
•  Resembles UNIX pipe IPC mechanism
•  Port number – rendezvous for app – e.g.
servaddr.sin_family = AF_INET;!
servaddr.sin_port = htons(CIS551_PORT);!
connect(sockfd, (SA *) &servaddr, sizeof(servaddr))!

TCP Packet Format
•  Flags

–  SYN
–  FIN
–  RESET
–  PUSH
–  URG
–  ACK

•  Fields

SequenceNum

SrcPort DstPort

Options (variable)

Checksum UrgPtr

HL 0 Flags Advert.Wind.

Acknowledgment

0 15 31

DATA

TCP State Transitions

TCP Receiver

•  Maintains a buffer from which
application reads

•  Advertises < buffer size as the window
for sliding window

•  Responds with Acknowledge and
AdvertisedWindow on each send;
updates byte counts when data O.K.

•  Application blocked until read() O.K.

TCP Sender

•  Maintains a buffer; sending application
is blocked until room in buffer for write!

•  Hold data until acknowledged by
receiver (ACK) as successfully received

•  Implement window expansion and
contraction; note difference between
flow and congestion control

TCP Flow & Congestion Control
•  Flow vs. Congestion Control

– Flow control protects the recipient from
being overwhelmed

– Congestion control protects the network
from being overwhelmed

•  TCP Congestion Control
– Additive Increase / Multiplicative Decrease
– Slow Start
– Fast Retransmit and Fast Recovery

Increase and Decrease
•  A value (CongestionWindow) is used to

control the number of unacknowledged
transmissions.

•  This value is increased linearly until timeouts
for ACKs are missed.

•  When timeouts occur, CongestionWindow
is decreased by half to reduce the pressure
on the network quickly.

•  Hence “additive increase / multiplicative
decrease”.

TCP “sawtooth” pattern

Time

M
bp

s

Available capacity

Packet drop
Receiver limit
(flow control)

Slow Start

•  Sending the entire window immediately
could cause a traffic jam in the network

•  Begin “slowly” by setting the
congestion window to one packet.

•  When acknowledgements arrive, double
the congestion window.

•  Continue until ACKs do not arrive (i.e.,
congestion), or flow control dominates

Network Vulnerabilities
•  Anonymity

–  Attacker is remote, origin can be disguised
–  Authentication

•  Many points of attack
–  Attacker only needs to find weakest link
–  Attacker can mount attacks from many machines

•  Sharing
–  Many, many users sharing resources

•  Complexity
–  Distributed systems are large and heterogeneous

•  Unknown perimeter
•  Unknown attack paths

Syn Flood Attack

•  TCP’s 3-way handshake:
–  SYN --- SYN+ACK --- ACK

•  Receiver must maintain a queue of partially open TCP connections
–  Called SYN_RECV connections
–  Finite resource (often small: e.g. 20 entries)
–  Timeouts for queue entries are about 1 minute.

•  Attacker
–  Floods a machine with SYN requests
–  Never ACKs them
–  Spoofs the sending address

