
CIS551: Computer and
Network Security

Jonathan M. Smith
jms@cis.upenn.edu

02/17/2014

CIS551 Topics
•  Computer Security

– Software/Languages, Computer Arch.
– Access Control, Operating Systems
– Threats: Vulnerabilities, Viruses

•  Computer Networks
– Physical layers, Internet, WWW, Applications
– Cryptography in several forms
– Threats: Confidentiality, Integrity, Availability

•  Systems Viewpoint
– Users, social engineering, insider threats

Sincoskie NIS model

W.D. Sincoskie, et al. “Layer Dissonance and Closure in Networked
Information Security” (white paper)

You are here
 and here
 and here

7-layer OSI network model

Application

Present’n

Session

Transport

Network

Link

Physical

Application

Present’n

Session

Transport

Network

Link

Physical

Machine 1 Machine 2 Layer #

7

1

2

6

5

4

3

Kinds of Firewalls
•  Personal firewalls

–  Run at the end hosts
–  e.g., Norton, Windows, etc.
–  Benefit: has more application/user specific

information

•  Filter Based
–  Operates by filtering based on packet headers

•  Proxy based
–  Operates at the level of the application
–  e.g., HTTP web proxy

Firewalls

Gateway Inside Outside

Filter Filter

•  Filters protect against “bad” packets.
•  Protect services offered internally from outside access.
•  Provide outside services to hosts located inside.

Firewalls
•  Filtering – what to inspect?

– Packet-filtering gateway (inspects headers)
– Application-level gateway (inspects contents)

Inside LAN Outside LAN

Connections
to internal
networks

Connections
to outside
networks

Packet
filtering
router

Packet
filtering
router

Appli-
cation

gateway

Adapted from Fig. 9-28 in “Distributed Systems”, by Tanenbaum and Van Steen

Filtering Firewalls
•  Filtering can take advantage of the following

information from network and transport layer headers:
–  Source
–  Destination
–  Source Port
–  Destination Port
–  Flags (e.g. ACK)
–  Protocol type (e.g. UDP vs. TCP)

•  Some firewalls keep state about open TCP
connections
–  Allows conditional filtering rules of the form “if

internal machine has established the TCP
connection, permit inbound reply packets”

Filter Example
Action ourhost port theirhost port comment
block * * BAD * untrusted host
allow GW 25 * * allow our SMTP port

Action ourhost port theirhost port comment
block * * * * default

Apply rules from top to bottom with assumed default entry:

Bad entry intended to allow connections to SMTP from inside:

Action ourhost port theirhost port comment
allow * * * 25 connect to their SMTP

This allows all connections from port 25, but an outside machine
can run anything on its port 25!

Filter Example Continued

Action src port dest port flags comment
allow 123.45.6.* * * 25 * their SMTP
allow * 25 * * ACK their replies

Permit outgoing calls to port 25.

This filter doesn’t protect against IP address spoofing.
The bad hosts can “pretend” to be one of the hosts with
addresses 123.45.6.* .

When to Filter?

Firewall

Inside Outside

On Input or Output?
•  Filtering on output can be more efficient

since it can be combined with table
lookup of the route.

•  However, some information is lost at the
output stage
– e.g. the physical input port on which the

packet arrived.
– Can be useful information to prevent

address spoofing.
•  Filtering on input can protect the router

itself.

Principles for Firewall Configuration
•  General principle: Filter as early as possible
•  Least Privilege:

–  Turn off everything that is unnecessary (e.g. Web Servers
should disable SMTP port 25)

•  Failsafe Defaults:
–  By default should reject
–  (Note that this could cause usability problems…)

•  Egress Filtering:
–  Filter outgoing packets too!
–  You know the valid IP addresses for machines internal to the

network, so drop those that aren’t valid.
–  This can help prevent DoS attacks in the Internet.

Example “real” firewall config script
############
FreeBSD Firewall configuration.
Single-machine custom firewall setup. Protects somewhat
against the outside world.
############

Set this to your ip address.
ip="192.100.66.1"
setup_loopback

Allow anything outbound from this address.
${fwcmd} add allow all from ${ip} to any out

Deny anything outbound from other addresses.
${fwcmd} add deny log all from any to any out

Allow inbound ftp, ssh, email, tcp-dns, http, https, imap, imaps,
pop3, pop3s.
${fwcmd} add allow tcp from any to ${ip} 21 setup
${fwcmd} add allow tcp from any to ${ip} 22 setup
${fwcmd} add allow tcp from any to ${ip} 25 setup
${fwcmd} add allow tcp from any to ${ip} 53 setup
${fwcmd} add allow tcp from any to ${ip} 80 setup
${fwcmd} add allow tcp from any to ${ip} 443 setup
…

Example real packet filter rules

Example “pf”
rules from
openbsd.org
website

Proxy-based Firewalls

•  Proxy acts like both a client and a server.
•  Able to filter using application-level info

–  For example, permit some URLs to be visible outside and prevent others from
being visible.

•  Proxies can provide other services too
–  Caching, load balancing, etc.
–  FTP and Telnet proxies are common too

Local
Web

Server
External
Client

Firewall

Web
Proxy

External TCP/HTTP
connection

Internal TCP/HTTP
connection

Benefits of Firewalls
•  Increased security for internal hosts.
•  Reduced amount of effort required to

counter break ins.
•  Possible added convenience of

operation within firewall (with some
risk).

•  Reduced legal and other costs
associated with hacker activities.

Drawbacks of Firewalls
•  Costs:

– HW purchase and maintenance
– SW development or purchase, and update costs
– Administrative setup and training, and ongoing

administrative costs and trouble-shooting
– Lost business/inconvenience from broken gateway
– Loss of some services that an open connection

would supply.
•  False sense of security

– Firewalls don’t protect against viruses, port 80 must
be kept open, …

Snort
•  Snort is a lightweight intrusion detection system:

–  Real-time traffic analysis
–  Packet logging (of IP networks)

•  Rules based logging to perform content pattern matching to
detect a variety of attacks and probes:
–  such as buffer overflows, stealth port scans, CGI attacks, SMB

probes, etc.
•  Example Rule:
 alert tcp any any -> 192.168.1.0/24 143 (content:"|E8C0

FFFF FF|/bin/sh"; msg:"New IMAP Buffer Overflow
detected!";)
–  Generates an alert on all inbound traffic for port 143 with contents

containing the specified attack signature.
•  The Snort web site:

–  http://www.snort.org/docs/

•  Question: How do you come up with the filter rules?

Capturing packets

•  pcap library; accessible with -lpcap
•  pcap_create() – online capture
•  pcap_open_offline() – saved data
•  pcap_compile() – BPF compiler
•  pcap_setfilter() – install compiled filter
•  pcap_next() – get next packet
•  Will do in-class demo

“Internet Telescopes”
•  Can be used to detect large-scale,

wide-spread attacks on the internet.

Worm
sends
randomly

Existing IP addresses

Unused
addresses

“Internet Telescopes”
•  Can be used to detect large-scale,

wide-spread attacks on the internet.

Worm
sends
randomly

Existing IP addresses

Telescope monitors packets for
large range of unused addresses

UCSD monitors
17M+ addresses

Challenge: Polymorphic
Viruses/Worms

•  Virus/worm writers know that signatures are used to
detect such malicious code.

•  Polymorphic viruses mutate themselves during
replication to prevent detection
–  Virus should be capable of generating many

different descendants
–  Simply embedding random numbers into virus code

is not enough

Strategies for Polymorphic Viruses
•  Change data:

–  Use different subject lines in e-mail

•  Encrypt most of the virus with a random key
–  Virus first decrypts main body using random key
–  Jumps to the code it decrypted
–  When replicating, generate a new key and encrypt the main part of

the replica

•  Still possible to detect decryption portion of the virus using virus
signatures
–  This part of the code remains unchanged
–  Worm writer could use a standard self-decompressing executable

format (like ZIP executables) to cause confusion (many false
positives)

Advanced Evasion Techniques
•  “Randomly” modify the code of the virus/worm by:

–  Inserting no-op instructions: subtract 0, move value to itself
–  Reordering independent instructions
–  Using different variable/register names
–  Using equivalent instruction sequences:

 y = x + x vs. y = 2 * x
–  These viruses are sometimes called "metamorphic" viruses in the

literature.

•  There exist libraries that, when linked against an appropriate
executable, automatically turn it into a metamorphic program.

•  Sometimes vulnerable software itself offers opportunities for hiding bad
code.
–  Example: ssh or SSL vulnerabilities may permit worm to propagate

over encrypted channels, making content filtering impossible.
–  If IPSEC becomes popular, similar problems may arise with it.

Other Evasion Techniques
•  Observation: worms don't need to scan randomly

–  They won't be caught by internet telescopes

•  Meta-server worm: ask server for hosts to infect (e.g., Google
for “powered by php”)

•  Topological worm: fuel the spread with local information from
infected hosts (web server logs, email address books, config
files, SSH “known hosts”)
•  No scanning signature; with rich inter-

 connection topology, potentially very fast.
•  Propagate slowly: "trickle" attacks

•  Also a very subtle form of denial of service attacks

Broader View of Defenses
•  Prevention -- make the monoculture hardier

–  Get the code right in the first place …
•  … or figure out what’s wrong with it and fix it

–  Lots of active research (static & dynamic methods)
–  Security reviews now taken seriously by industry

•  E.g., ~$200M just to review Windows Server 2003
–  But very expensive
–  And very large “installed base” problem

•  Prevention -- diversify the monoculture
–  Via exploiting existing heterogeneity (Windows, MacOS,

OpenBSD)
–  Via creating artificial heterogeneity (stack randomization,

etc.)

Broader View of Defenses, con’t
•  Prevention -- keep vulnerabilities

inaccessible
– Cisco’s Network Admission Control

•  Examine hosts that try to connect, block if
vulnerable

– Microsoft’s Shield
•  Shim-layer blocks network traffic that fits known

vulnerability (rather than known exploit)

Detecting Attacks
•  Attacks (against computer systems) usually consist of several

stages:
–  Finding software vulnerabilities
–  Exploiting them
–  Hiding/cleaning up the exploit

•  Attackers care about finding vulnerabilities:
–  What machines are available?
–  What OS / version / patch level are the machines running?
–  What additional software is running?
–  What is the network topology?

•  Attackers care about not getting caught:
–  How detectable will the attack be?
–  How can the attacker cover her tracks?

•  Programs can automate the process of finding/exploiting
vulnerabilities.
–  Same tools that sys. admins. use to audit their systems…
–  A worm is just an automatic vulnerability finder/exploiter…

Attacker Reconnaissance
•  Network Scanning

–  Existence of machines at IP addresses
–  Attempt to determine network topology
–  ping, traceroute

•  Port scanners
–  Try to detect what processes are running on which ports,

which ports are open to connections.
–  Typical machine on the Internet gets 10-20 port scans per

day!
–  Can be used to find hit lists for flash (“Warhol”!) worms such

as Slammer/Sapphire
•  Web services

–  Use a browser to search for CGI scripts, Javascript, etc.

Determining OS information
•  Gives a lot of information that can help

an attacker carry out exploits
– Exact version of OS code can be

correlated with vulnerability databases
•  Sadly, often simple to obtain this

information:
– Just try telnet! (this example no longer

works):
playground~> telnet hpux.u-aizu.ac.jp
Trying 163.143.103.12 ...
Connected to hpux.u-aizu.ac.jp.
Escape character is '^]'.
HP-UX hpux B.10.01 A 9000/715 (ttyp2)

login:

Determining OS
•  Or FTP (tested 3/4/10, 8AM):

$ ftp ftp.gftp.netscape.com
Connected to ftp.gftp.netscape.com.
220-d6
220
Name (ftp.gftp.netscape.com:jms): anonymous
331 Please specify the password.
Password:
230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> system
215 UNIX Type: L8
ftp> exit
221 Goodbye.
$

Determining OS
•  Exploit different implementations of protocols

–  Different OS’s have different behavior in some cases
•  Consider TCP protocol, there are many flags and options, and

some unspecified behavior
–  Reply to bogus FIN request for TCP port

(should not reply, but some OS’s do)
–  Handling of invalid flags in TCP packets

(some OS’s keep the invalid flags set in reply)
–  Initial values for RWS, pattern in random sequence numbers, etc.
–  Can narrow down the possible OS based on the combination of

implementation features
•  Tools can automate this process

Auditing: Remote audit tools
•  Several utilities available to “attack” or gather

information about services/daemons on a system.
–  SATAN (early 1990’s): “Security Administrator

Tool for Analyzing Networks”
–  SAINT - Based on SATAN utility
–  SARA - Also based on SATAN
–  Nessus - Open source vulnerability scanner

•  http://www.nessus.org
–  Nmap

•  Commercial:
–  ISS scanner
–  Cybercop

Nmap screenshot:

