
CIS551: Computer and
Network Security

Jonathan M. Smith
jms@cis.upenn.edu

02/26/2014

CIS551 Topics
•  Computer Security

– Software/Languages, Computer Arch.
– Access Control, Operating Systems
– Threats: Vulnerabilities, Viruses

•  Computer Networks
– Physical layers, Internet, WWW, Applications
– Cryptography in several forms
– Threats: Confidentiality, Integrity, Availability

•  Systems Viewpoint
– Users, social engineering, insider threats

Sincoskie NIS model

W.D. Sincoskie, et al. “Layer Dissonance and Closure in Networked
Information Security” (white paper)

You are here

 and here

7-layer OSI network model

Application

Present’n

Session

Transport

Network

Link

Physical

Application

Present’n

Session

Transport

Network

Link

Physical

Machine 1 Machine 2 Layer #

7

1

2

6

5

4

3

Cyber-Ecosystem

Server
Computer

Web
Server

Client
Computer

Web
Browser

Browser
Vendor

Network
Vendor
(ISP)

Host Software Vendor

Content Vendor

E-mail
service

E-mail
client

User

Service Vendor

G
at

ew
ay

 G
atew

ay

DPI

App

Application
Vendor

Enterprise
Manage-

ment

Maintaining State
•  HTTP is a stateless protocol

–  Server doesn't store any information about the
connections it handles (each request is treated
independently)

–  Makes it hard to maintain session information
•  Encode state in the URL:

– …/cgi-bin/nxt?state=-189534fjk
–  Used commonly on message boards, etc. to track

thread
•  Use HIDDEN input fields

–  When user fills in web forms, the POST request
gives server the data

–  You can embed state in invisible "input" fields
•  Cookies

–  Store data on the client's machine

Hidden Fields
<html> !
<head> <title>My Page</title> </head> !
<body> !
 <form name="myform" !
 action="http://…/handle.cgi" !
 method="POST"> !
 <div align="center"> !
 <input type="text" size="25" value="Name?">!
 <input type="hidden" name="Language" value="English"> !

 </div> </form> !
</body> !
</html>!

Cookies (Client-side state)
•  Server can store cookies on the client machine by issuing:

Set-Cookie: NAME=VALUE; [expires=DATE;]  
[path=PATH;] [domain=DOMAIN_NAME;] [secure]!

•  Domain and Path restrict the servers (and paths on those
servers) to which the cookie will be sent

•  The "secure" flag says that the cookie should only be sent
over HTTPS

•  Uses:
–  User authentication
–  Personalization
–  User tracking: e.g. Doubleclick (3rd party cookies)

Cookies (cont'd)
•  When the client requests a URL from a server, the browser

matches the URL against all cookies on the client.
•  If they match, then the client request includes the line:

 Cookie: NAME1=VALUE1; NAME2=VALUE2;…!

•  Notes:

–  New instances of cookies overwrite old ones
–  Clients aren't required to purge expired cookies (though

they shouldn't send them)
–  Cookies can be at most 4k, at most 20 per site
–  To delete a cookie, the server can send a cookie with

expires set to a past date
–  HTTP proxy servers shouldn't cache Set-cookie

headers…

Cookies

•  Used to store state on user’s machine

Browser
Server

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

 domain = (who can read) ;
 expires = (when expires) ;
 secure = (only over SSL)

Browser
Server GET …

Cookie: NAME = VALUE

Http is stateless protocol; cookies add state

If expires=NULL:
this session only

Cookie/Hidden Field Risks
•  Danger of storing data on browser:

–  User can change values

•  Silly example: Shopping cart software.
 Set-cookie: shopping-cart-total = 150 ($)

–  User edits cookie file (cookie poisoning):
 Cookie: shopping-cart-total = 15 ($)

– … bargain shopping.

•  Similar behavior with hidden fields:
 <INPUT TYPE=“hidden” NAME=price
VALUE=“150”>

Example: dansie.net shopping cart
•  http://www.dansie.net/demo.html (April, 2009)

<FORM METHOD=POST ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

Black Leather purse with
leather straps
Price: $20.00

<INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
<INPUT TYPE=HIDDEN NAME=price VALUE="20.00">
<INPUT TYPE=HIDDEN NAME=sh VALUE="1">
<INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
<INPUT TYPE=HIDDEN NAME=img2 VALUE="purse_large.jpg">
<INPUT TYPE=HIDDEN NAME=return VALUE="http://www.dansie.net/demo.html">
<INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black Leather purse with leather straps">

<INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">
</FORM>

Solution
•  When storing state on browser use a Message

Authentication Code (MAC) with server's secret key to
enforce data integrity.

•  .NET 2.0 (probably similar in 3.0):
–  System.Web.Configuration.MachineKey

•  Secret web server key intended for cookie
protection

–  HttpCookie cookie = new HttpCookie(name, val);
HttpCookie encodedCookie =
 HttpSecureCookie.Encode (cookie);

–  HttpSecureCookie.Decode (cookie);

Cookie authentication (over https)
Browser Web Server Auth server

POST login.cgi
Username & pwd Validate user

auth=val
Store val

Set-cookie: auth=val

GET restricted.html
Cookie: auth=val restricted.html

auth=val

YES/NO If YES,
 restricted.html

Check val

Cookie auth is insufficient
•  Example:

–  User logs in to bank.com. Forgets to sign off.
–  Session cookie remains in browser state

–  Then user visits another site containing:
 <form name=F action=http://bank.com/BillPay.php>
 <input name=recipient value=badguy> …
 <script> document.F.submit(); </script>

–  Browser sends user auth cookie with request
•  Transaction will be fulfilled

•  Problem:
–  Cookie auth is insufficient when side effects can happen
–  Correct use: use cookies + hidden fields
–  Hidden fields: store nonces that must be presented to the server

•  Can't be guessed by the malicious web site

Managing cookie policy via proxy

Browser
Proxy

Network

•  Proxy intercepts request and response
•  May modify cookies before sending to Browser
•  Can do other checks: filter ads, block sites, etc.
•  This is just a reference monitor for cookies

Cookie Jar

Sample Proxy:
•  Cookie management by policy in cookiefile

–  Default: all cookies are silently crunched
–  Options

•  Allow cookies only to/from certain sites
•  Block cookies to browser (but allow to server)
•  Send vanilla wafers instead

•  Block URLs matching any pattern in blockfile
–  Example: pattern /*.*/ad matches http://nomatterwhere.com/images/

advert/g3487.gif

Easy to write your own http proxy; you can try this at home

Phishing
•  Phishing:

–  Trojan horse e-mails and web sites designed to trick the
user into giving up account/pin/password/credit card
information.

•  December 17, 2007: Gartner Survey
–  Estimated $3.2 BILLION was lost to phishing attacks
–  3.3% of those surveyed lost money due to phishing
–  (more than in prior years)
–  Most spoofed: PayPal and eBay
–  See: www.doshelp.com/scams-fraud/Services/Ebay-Scams.htm

•  Goal: Present a plausible experience to the user

Phishing Techniques
•  See "Technical Trends in Phishing Attacks"

–  by Jason Milletary (US-CERT)
•  Social Engineering
•  Bot nets

–  Same infrastructure as Spam mail
•  Web site hosting

–  Redirects / obfuscated URLs etc.
•  Phishing Kits

–  Pre-generated HTML/e-mail that looks official (graphics,
etc.)

•  Browser vulnerabilities
–  Borderless popup windows that don't display the address

bar
–  Cross-domain vulnerabilities

•  XSS using URL redirectors that don't sanitize inputs

Reading browser history
•  CSS properties of hyperlinks
•  Can also use cache-based techniques:

–  Images and other data in the cache take
less time to load, so a script can time how
long it takes to load a resource to get some
hints about a user's prior browsing.

Violation of the same-origin principle:
 “One site cannot use information
belonging to another site.”

Visited link tracking
•  Visited links displayed in different color (74% of sites)

–  Information easily accessible by javascript
•  Attacks also without javascript

–  Bank logo images are stacked on top of each other
–  CSS rules cause the un-visited links to vanish
–  Page displays bank logo of site that user has visited

<html><head>
<style> a { position:absolute; border:0; } a:link { display:none } </style>
</head><body>

...
</body></html>

http://www.safehistory.com/

Countermeasures?
•  Education and awareness training
•  "Security indicators" in the web browser

– E.g. the yellow address background for
https connections in FireFox

•  Browser extensions that act as a
firewall
– Can blacklist known phishing sites

•  Internet lists of known phishing sites:
– www.phishtank.com

Do they work?
•  Paper: "The Emperor's New Security Indicators: An

evaluation of website authentication and the effect of
role playing on usability studies" (Schechter et al.
2007)
–  http://dl.acm.org/citation.cfm?id=1264196

•  Will customers of an online bank…
–  enter their passwords even if their browsers'

HTTPS indicators are missing?
–  enter their passwords even if their site-

authentication images are missing?
–  enter their passwords even if they are presented

with an IE7 warning page?

Study
•  67 participants:

–  All had accounts at the same bank
–  Mostly Harvard students (but: not computer scientists/engineers)

•  Divided into 3 groups:
–  Group 1: Played a "role" but not told that security was important
–  Group 2: Played a "role" but told that security was important
–  Group 3: Not role playing

•  Participants were asked to complete several tasks
–  Check facts about their account balance, last login, last transaction,

last statement
•  Hints that someone was spoofing:

–  Remove HTTPS indicator
–  Remove site authentication images
–  Present a warning page

Results
Group 1

Role playing
Group 2

Role playing
Group 3

Per. Acct.
Upon noticing

HTTPS missing
0% 0% 0%

Image
removed

0% 0% 9%

After
Warning

47% 29% 55%

Never
 (Always

logged in)

53% 71% 36%

