
CIS551: Computer and Network Security

Jonathan M. Smith jms@cis.upenn.edu 03/17/2014

CIS551 Topics

- Computer Security
 - Software/Languages, Computer Arch.
 - Access Control, Operating Systems
 - Threats: Vulnerabilities, Viruses
- Computer Networks
 - Physical layers, Internet, WWW, Applications
 - Cryptography in several forms
 - Threats: Confidentiality, Integrity, Availability
- Systems Viewpoint
 - Users, social engineering, insider threats

Sincoskie NIS model

W.D. Sincoskie, *et al.* "Layer Dissonance and Closure in Networked Information Security" (white paper)

Perfect Substitution Ciphers

- Choose a string of *random* bits $b_1 \dots b_n$ the same length as the plaintext $p_1 \dots p_n$, XOR them to obtain the ciphertext $c_1 \dots c_n$.
- Perfect Secrecy
 - Probability that a given message is encoded in the ciphertext is unaltered by knowledge of the ciphertext
 - Proof: Give me any plaintext message, and any ciphertext, and I can construct a key that will produce the ciphertext from the plaintext.

One-time Pads

- Another name for Perfect Substitution
- Actually used
 - Physical pad of paper
 - List of random numbers
 - Pages were torn out and destroyed after use
 - "Numbers Stations" (see Wikipedia)
- Vernam Cipher
 - Used by AT&T
 - Random sequence stored on punch tape
- Not practical for general purpose cryptography
 - But useful as component in other protocols.

Problems with "Perfect" Substitution

- Key is the same length as the plaintext
 - Sender and receiver must agree on the same random sequence
 - Not any easier to transmit key securely than to transmit plaintext securely
- Need to be able to generate many truly random bits
 - Pseudorandom numbers generated by an algorithm aren' t good enough for long messages
- Can't reuse the key
 - Not enough confusion

Diffusion and Confusion

- Diffusion
 - Ciphertext should look random
 - Protection against statistical attacks
 - Monoalphabetic -> Polyalphabetic substitution; diffusion increases
- Confusion
 - Make the relation between the key, plaintext and ciphertext complex
 - Lots of confusion -> hard to calculate key in a known plaintext attack
 - Polyalphabetic substitution: little confusion

Computational Security

- Perfect Ciphers are *unconditionally* secure
 - No amount of computation will help crack the cipher (i.e., the only strategy is brute force)
- In practice, strive for *computational security*
 - Given enough power, the attacker could crack the cipher (example: brute force attack)
 - But, an attacker with only bounded resources is extremely unlikely to crack it
 - Example: Assume attacker has only *polynomial time*, then encryption algorithm that can't be inverted in less than exponential time is secure.
 - Results are usually stated probabilistically

Kinds of Industrial Strength Crypto

- Shared Key Cryptography
- Public Key Cryptography
- Cryptographic Hashes
- All of these aim for computational security
 - Not all methods have been *proven* to be intractable to crack.

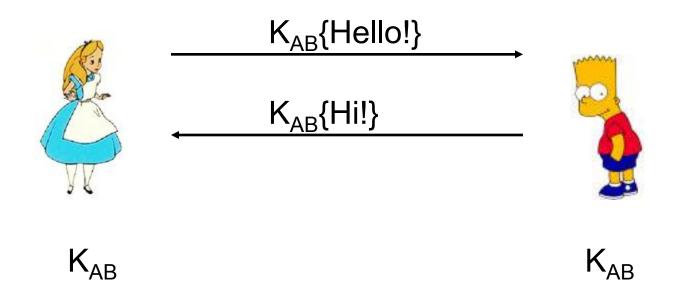
Shared Key Cryptography

- Sender & receiver use the <u>same</u> key
- Key <u>must</u> remain <u>private</u>
- Also called symmetric or secret key cryptography
- Often are *block-ciphers*

– Process plaintext data in blocks

• Examples: DES, Triple-DES, Blowfish, Twofish, AES, Rijndael, ...

Shared Key Notation

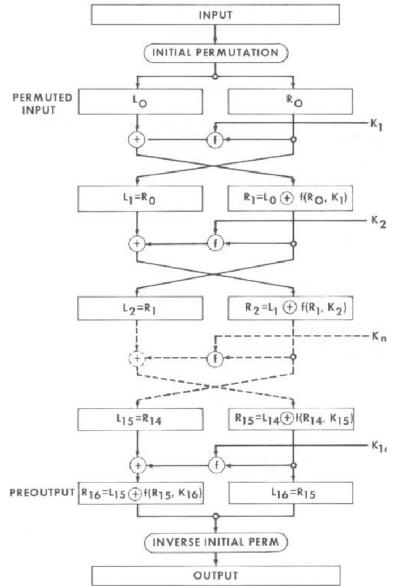

- Encryption algorithm

 E: key x plain → cipher
 Notation: K{msg} = E(K, msg)
- Decryption algorithm
 D : key x cipher → plain
- D inverts E

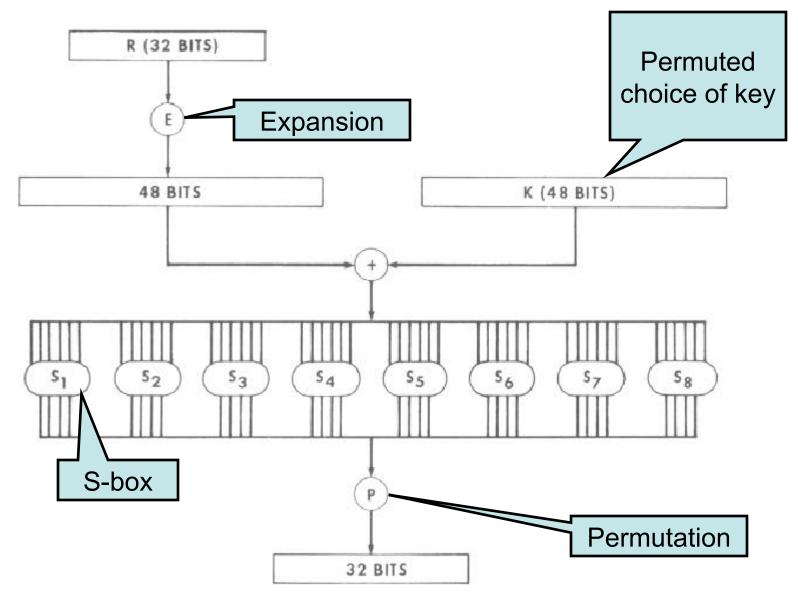
D(K, E(K, msg)) = msg

- Use capital "K" for shared (secret) keys
- Sometimes E is the same algorithm as D

Secure Channel: Shared Keys Alice Bart

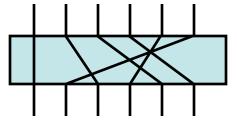

Data Encryption Standard (DES)

- Adopted as a standard in 1976
- Security analyzed by the National Security Agency (NSA)
 - <u>http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf</u>
- Key length is 56 bits
 - padded to 64 bits by using 8 parity bits
- Uses simple operators on (up to) 64 bit values
 - Simple to implement in software or hardware
- Input is processed in 64 bit blocks
- Based on a series of 16 *rounds*
 - Each cycle uses permutation & substitution to combine plaintext with the key

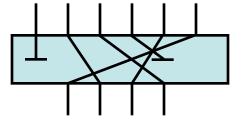

DES Encryption

DES follows the structure of a general class of encryption agorithms called *Feistel* ciphers:

- Rounds of encryption
- Each round merges one half (L) of the input with the other (R)



One Round of DES (f of previous slide)



Types of Permutations in DES

Permutation

Permuted Choice

Expansion Permutation

DES S-Boxes (Substitution tables)

- 6 bits of input replaced by 4 bits of output
- Implemented as a lookup table
 - 8 S-Boxes
 - Each S-Box has a table of 64 entries
 - Each entry specifies a 4-bit output
- S-Box design is complex: here is the "black art" of cryptography design.
- Example desiderata:
 - No output of any S-Box should be close to a linear function of the inputs.
 - If two inputs to an S-Box differ by exactly one bit, the outputs must differ in at least two bits.
 - Each row of an S-Box should contain all 16 possible bit combinations

DES Decryption

- Use the same algorithm as encryption, but use $k_{16} \hdots k_1$ instead of $k_1 \hdots k_{16}$
- Proof that this works:

– To obtain round j from j-1:

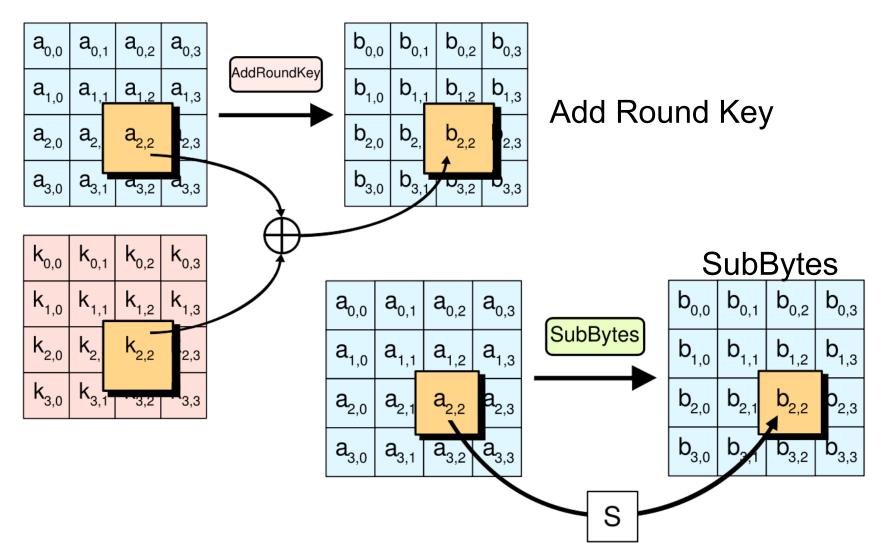
(1)
$$L_j = R_{j-1}$$

(2) $R_j = L_{j-1} \oplus f(R_{j-1}, k_j)$

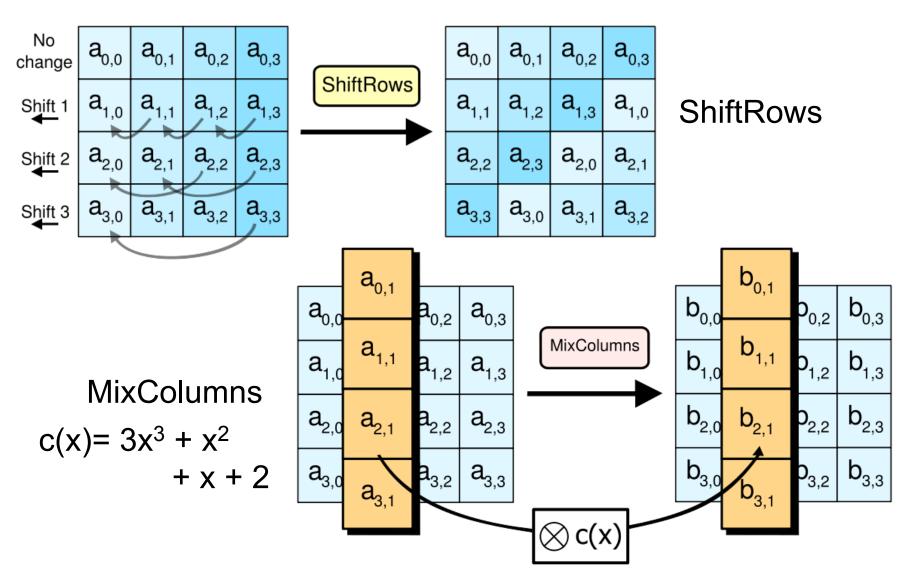
– Rewrite in terms of round j-1:

(1)
$$R_{j-1} = L_j$$

(2) $L_{j-1} \oplus f(R_{j-1}, k_j) = R_j$
 $L_{j-1} \oplus f(R_{j-1}, k_j) \oplus f(R_{j-1}, k_j) = R_j \oplus f(R_{j-1}, k_j)$
 $L_{j-1} = R_j \oplus f(R_{j-1}, k_j)$
 $L_{j-1} = R_j \oplus f(L_j, k_j)$


Problems with DES

- Key length too short: 56 bits
 - <u>www.distributed.net</u> broke a DES challenge in 1999 in under 24 hours (parallel attack)
- Other problems
 - Bit-wise complementation of key produces bit-wise complemented ciphertext
 - Not all keys are good (half 0's half 1's)
 - Differential cryptanalysis (1990): Carefully choose pairs of plaintext that differ in particular known ways (e.g. they are complements)
 - But particular choice of S boxes is secure against this (!) (developers of DES knew about differential cryptanalysis before it was "publically" known in the research community)


Advanced Encryption Standard (AES)

- National Institute of Standards & Technology NIST
 - Computer Security Research Center (CSRC)
 - http://csrc.nist.gov/
- Uses the Rijndael algorithm
 - Invented by Belgian researchers
 Dr. Joan Daemen & Dr. Vincent Rijmen
 - Adopted May 26, 2002
 - Key length: 128, 192, or 256 bits
 - Block size: 128, 192, or 256 bits
- Not a Feistel cipher
 - 10 rounds, each consisting of: SubBytes / Shift Rows / Mix Columns / Add Round Key

AES Operations

AES Operations

Block Cipher Modes of Operation

- Often want to encrypt large pieces of data, but block ciphers only work on fixed, small chunks.
- Various Options:
 - *Electronic Code Book* each block of plaintext bits is encoded independently using the same key:
 C_j = K{P_j}
 - Cipher Block Chaining each block of plaintext is XORed with the preceding block of ciphertext, starting with initialization vector C₀:
 C_i = K{P_i ⊕ C_{i-1}} and C₀ is an initialization vector
 - Other options: Cipher Feedback (to convert a block cipher to a streaming cipher), Counter mode (XOR an encryption counter with each material from S. Zdancewic/C. Gunter