CIS551: Computer and Network Security

Jonathan M. Smith

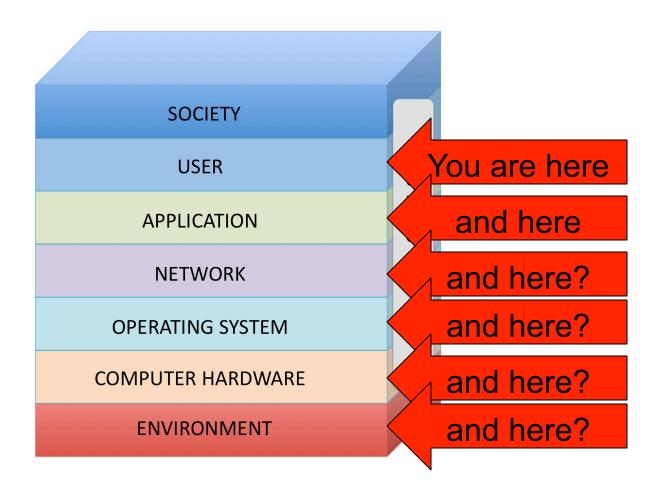
jms@cis.upenn.edu

03/19/2014

CIS551 Topics

- Computer Security
 - Software/Languages, Computer Arch.
 - Access Control, Operating Systems
 - Threats: Vulnerabilities, Viruses
- Computer Networks
 - Physical layers, Internet, WWW, Applications
 - Cryptography in several forms
 - Threats: Confidentiality, Integrity, Availability
- Systems Viewpoint
 - Users, social engineering, insider threats

Sincoskie NIS model

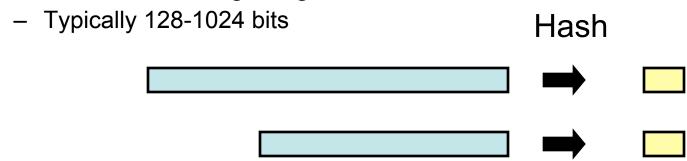


W.D. Sincoskie, et al. "Layer Dissonance and Closure in Networked Information Security" (white paper)

Uses material from S. Zdancewic/C. Gunter

Hash Algorithms

- Take a variable length string
- Produce a fixed length digest



- (Noncryptographic) Examples:
 - Parity (or byte-wise XOR)
 - CRC (cyclic redundancy check) used in communications
 - Ad hoc hashes used for hash tables
- Realistic Example
 - The NIST Secure Hash Algorithm (SHA) takes a message of less than 2⁶⁴ bits and produces a digest of 160 bits

Cryptographic Hashes

- Create a hard-to-invert summary of input data
- Useful for integrity properties
 - Sender computes the hash of the data, transmits data and hash
 - Receiver uses the same hash algorithm, checks the result
- Like a check-sum or error detection code
 - Uses a cryptographic algorithm internally
 - More expensive to compute
- Sometimes called a Message Digest
- History:
 - Message Digest (MD4 -- invented by Rivest, MD5)
 - Secure Hash Algorithm 1993 (SHA-0)
 - Secure Hash Algorithm (SHA-1)
 - SHA-2 (actually a family of hash algorithms with varying output sizes)
 - SHA-3 2012 winner of competition, not yet standardized by NIST
- Attacks on SHA-0 + SHA-1 exist, but not SHA-2 (yet)

Uses of Hash Algorithms

- Hashes are used to protect integrity of data
 - Virus Scanners
 - Program fingerprinting in general
 - Modification Detection Codes (MDC)
- Message Authenticity Code (MAC)
 - Includes a cryptographic component
 - Send (msg, hash(msg, key))
 - Attacker who doesn't know the key can't modify msg (or the hash)
 - Receiver who knows key can verify origin of message
- Make digital signatures more efficient (we'll see this later)

Desirable Properties

- The probability that a randomly chosen message maps to an n-bit hash should ideally be $(\frac{1}{2})^n$.
 - Attacker must spend a <u>lot</u> of effort to be able to modify the source message <u>without altering the hash value</u>
- Hash functions h for cryptographic use as MDC's fall in one or both of the following classes.
 - Collision Resistant Hash Function: It should be computationally infeasible to find two distinct inputs that hash to a common value (ie. h(x) = h(y)).
 - One Way Hash Function: Given a specific hash value y, it should be computationally infeasible to find an input x such that h(x)=y.

Secure Hash Algorithm (SHA)

- Pad message so it can be divided into 512-bit blocks, including a 64 bit value giving the length of the original message.
- Process each block as 16 32-bit words called W(t) for t from 0 to 15.
- Expand from these 16 words to 80 words by defining as follows for each t from 16 to 79:
 - $-W(t) := W(t-3) \oplus W(t-8) \oplus W(t-14) \oplus W(t-16)$
- Constants H0, ..., H5 are initialized to special constants
- Result is final contents of H0, ..., H5

```
A := (H0)B := (H1)C := (H2)D := (H3)E := (H4)
   for I := 0 to 19 begin
       TEMP := S(5,A) + ((B \land C) \lor (\neg B \land D)) + E + W(I) + 5A827999;
      E := D; D := C; C := S(30,B); B := A; A := TEMP
   end
                                      Chaining Variables
   for I := 20 to 39 begin
       TEMP := S(5,A) + (B \oplus C \oplus D) + E + W(I) + 6ED9EBA1;
       E := D; D := C; C := S(30,B); B := A; A := TEMP
   end
   for I := 40 to 59 begin
       TEMP := S(5,A) + ((B \land C) \lor (B \land D) \lor (C \land D)) + E + W(I) + 8F1BBCDC;
       E := D; D := C; C := S(30,B); B := A; A := TEMP
   end
                              Shift A left 5 bits
   for I := 60 to 79 begin
       TEMP := S(5,A) + (B \oplus C \oplus D) + E + W(I) + CA62C1D6;
      E := D; D := C; C := S(30,B); B := A; A := TEMP
   end
   H0 := H0+A; H1 := H1+B; H2 := H2+C; H3 := H3+D; H4 := H4+E
end
                         Uses material from S. Zdancewic/C. Gunter
```

for each 16-word block begin

Attacks against SHA-1

- In early 2005, Rijmen and Oswald published an attack on a reduced version of SHA-1 (53 out of 80 rounds) which finds collisions with a complexity of fewer than 2⁸⁰ operations.
- In February 2005, an attack by Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu was announced. The attacks can find collisions in the full version of SHA-1, requiring fewer than 2⁶⁹ operations (brute force would require 2⁸⁰.)
- In August 2005, same group lowered the threshold to 2⁶³.
- May lead to more attacks...

Problems with Shared Key Crypto

- Compromised key means interceptors can decrypt any ciphertext they've acquired.
 - Change keys frequently to limit damage
- Distribution of keys is problematic
 - Keys must be transmitted securely
 - Use couriers?
 - Distribute in pieces over separate channels?
- Number of keys is O(n²) where n is # of participants
- Potentially easier to break?

Diffie-Hellman Key Exchange

- Choose a prime p (publicly known)
 - Should be about 512 bits or more
- Pick g
 - g must be a primitive root of p.
 - A primitive root generates the finite field p.
 - Every n in {1, 2, ..., p-1} can be written as g^k mod p
 - Example: 2 is a primitive root of 5
 - $-2^0 = 1$ $2^1 = 2$ $2^2 = 4$ $2^3 = 3$ (mod 5)
 - Intuitively means that it's hard to take logarithms base g because there are many candidates.

Diffie-Hellman

Alice

"Let's use (p, g)"

"OK"

g^A mod p

g^B mod p

- 1. Alice & Bart decide on a public prime p and primitive root g.
- 2. Alice chooses secret number A. Bart chooses secret number B
- 3. Alice sends Bart g^A mod p.
- 4. The shared secret is g^{AB} mod p.

Details of Diffie-Hellman

- Alice computes g^{AB} mod p because she knows A:
 - $-g^{AB} \mod p = (g^B \mod p)^A \mod p$
- An eavesdropper gets g^A mod p and g^B mod p
 - They can easily calculate g^{A+B} mod p but that doesn't help.
 - The problem of computing discrete logarithms (to recover A from g^A mod p) is hard.

Example

- Alice and Bart agree that p=71 and g=7.
- Alice selects a private key A=5 and calculates a public key g^A = 7⁵ = 51 (mod 71). She sends this to Bart.
- Bart selects a private key B=12 and calculates a public key g^B = 7¹² = 4 (mod 71). He sends this to Alice.
- Alice calculates the shared secret: $S \equiv (g^B)^A \equiv 4^5 \equiv 30 \pmod{71}$
- Bart calculates the shared secret $S \equiv (g^A)^B \equiv 51^{12} \equiv 30 \pmod{71}$

Why Does it Work?

- Security is provided by the difficulty of calculating discrete logarithms.
- Feasibility is provided by
 - The ability to find large primes.
 - The ability to find primitive roots for large primes.
 - The ability to do efficient modular arithmetic.
- Correctness is an immediate consequence of basic facts about modular arithmetic.

One-way Functions

- A function is one-way if it's
 - Easy to compute
 - Hard to invert (in the average case)
- Examples
 - Exponentiation vs. Discrete Log
 - Multiplication vs. Factoring
 - Knapsack Packing
 - Given a set of numbers {1, 3, 6, 8, 12} find the sum of a subset
 - Given a target sum, find a subset that adds to it
- Trapdoor functions
 - Easy to invert given some extra information
 - E.g. factoring p*q given q

Public Key Cryptography

- Sender encrypts using a public key
- Receiver decrypts using a private key
- Only the private key must be kept secret
 - Public key can be distributed at will
- Also called asymmetric cryptography
- Can be used for digital signatures
- Examples: RSA, El Gamal, DSA, various algorithms based on elliptic curves

Used in SSL, ssh, PGP, ...

Public Key Notation

Encryption algorithm

E: keyPub x plain → cipher Notation: K{msg} = E(K, msg)

Decryption algorithm

D: keyPriv x cipher → plain Notation: k{msg} = D(k,msg)

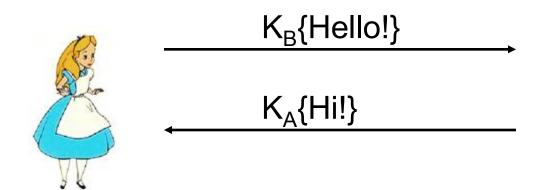
D inverts E

$$D(k, E(K, msg)) = msg$$

- Use capital "K" for public keys
- Use lower case "k" for private keys
- Sometimes E is the same algorithm as D

Secure Channel

Alice



$$K_A, K_B$$
 k_A

$$\begin{matrix} K_{A,} K_{B} \\ k_{B} \end{matrix}$$

Trade-offs for Public Key Crypto

- More computationally expensive than shared key crypto
 - Algorithms are harder to implement
 - Require more complex machinery
- More formal justification of difficulty
 - Hardness based on complexity-theoretic results
- A principal needs one private key and one public key
 - Number of keys for pair-wise communication is O(n)

RSA Algorithm

- Ron Rivest, Adi Shamir, Leonard Adleman
 - Proposed in 1979
 - They won the 2002 Turing award for this work

- Has withstood years of cryptanalysis
 - Not a guarantee of security!
 - But a strong vote of confidence.
- Hardware implementations: 1000 x slower than DES

RSA at a High Level (more later)

- Public and private key are derived from secret prime numbers
 - Keys are typically ≥ 1024 bits
- Plaintext message (a sequence of bits)
 - Treated as a (large!) binary number
- Encryption is modular exponentiation
- To break the encryption, conjectured that one must be able to factor large numbers
 - Not known to be in P (polynomial time algorithms)
 - Is known to be in BQP (bounded-error, quantum polynomial time – Shor's algorithm)