
CIS551: Computer and
Network Security

Jonathan M. Smith
jms@cis.upenn.edu

03/19/2014

Uses material from S. Zdancewic/C. Gunter

CIS551 Topics
•  Computer Security

– Software/Languages, Computer Arch.
– Access Control, Operating Systems
– Threats: Vulnerabilities, Viruses

•  Computer Networks
– Physical layers, Internet, WWW, Applications
– Cryptography in several forms
– Threats: Confidentiality, Integrity, Availability

•  Systems Viewpoint
– Users, social engineering, insider threats

Uses material from S. Zdancewic/C. Gunter

Sincoskie NIS model

W.D. Sincoskie, et al. “Layer Dissonance and Closure in Networked
Information Security” (white paper)

You are here

and here

and here?
and here?

and here?
and here?

Uses material from S. Zdancewic/C. Gunter

Hash Algorithms
•  Take a variable length string
•  Produce a fixed length digest

–  Typically 128-1024 bits

•  (Noncryptographic) Examples:
–  Parity (or byte-wise XOR)
–  CRC (cyclic redundancy check) used in communications
–  Ad hoc hashes used for hash tables

•  Realistic Example
–  The NIST Secure Hash Algorithm (SHA) takes a message of less

than 264 bits and produces a digest of 160 bits

Hash

Uses material from S. Zdancewic/C. Gunter

Cryptographic Hashes
•  Create a hard-to-invert summary of input data
•  Useful for integrity properties

–  Sender computes the hash of the data, transmits data and hash
–  Receiver uses the same hash algorithm, checks the result

•  Like a check-sum or error detection code
–  Uses a cryptographic algorithm internally
–  More expensive to compute

•  Sometimes called a Message Digest
•  History:

–  Message Digest (MD4 -- invented by Rivest, MD5)
–  Secure Hash Algorithm - 1993 - (SHA-0)
–  Secure Hash Algorithm (SHA-1)
–  SHA-2 (actually a family of hash algorithms with varying output

sizes)
–  SHA-3 - 2012 winner of competition, not yet standardized by NIST

•  Attacks on SHA-0 + SHA-1 exist, but not SHA-2 (yet)

Uses material from S. Zdancewic/C. Gunter

Uses of Hash Algorithms
•  Hashes are used to protect integrity of data

–  Virus Scanners
–  Program fingerprinting in general
–  Modification Detection Codes (MDC)

•  Message Authenticity Code (MAC)
–  Includes a cryptographic component
–  Send (msg, hash(msg, key))
–  Attacker who doesn’t know the key can’t modify

msg (or the hash)
–  Receiver who knows key can verify origin of

message
•  Make digital signatures more efficient (we'll see this

later)

Uses material from S. Zdancewic/C. Gunter

Desirable Properties
•  The probability that a randomly chosen message maps to an n-

bit hash should ideally be (½)n.
–  Attacker must spend a lot of effort to be able to modify the source

message without altering the hash value

•  Hash functions h for cryptographic use as MDC’s fall in one or
both of the following classes.
–  Collision Resistant Hash Function: It should be computationally

infeasible to find two distinct inputs that hash to a common value
(ie. h(x) = h(y)).

–  One Way Hash Function: Given a specific hash value y, it should
be computationally infeasible to find an input x such that h(x)=y.

Uses material from S. Zdancewic/C. Gunter

Secure Hash Algorithm (SHA)

•  Pad message so it can be divided into 512-bit blocks,
including a 64 bit value giving the length of the original
message.

•  Process each block as 16 32-bit words called W(t) for
t from 0 to 15.

•  Expand from these 16 words to 80 words by defining
as follows for each t from 16 to 79:
–  W(t) := W(t-3) ⊕ W(t-8) ⊕ W(t-14) ⊕ W(t-16)

•  Constants H0, …, H5 are initialized to special
constants

•  Result is final contents of H0, … , H5

Uses material from S. Zdancewic/C. Gunter

SHA

Chaining Variables

Shift A left 5 bits

Uses material from S. Zdancewic/C. Gunter

Attacks against SHA-1
•  In early 2005, Rijmen and Oswald published an

attack on a reduced version of SHA-1 (53 out of 80
rounds) which finds collisions with a complexity of
fewer than 280 operations."

•  In February 2005, an attack by Xiaoyun Wang,
Yiqun Lisa Yin, and Hongbo Yu was announced. The
attacks can find collisions in the full version of SHA-1,
requiring fewer than 269 operations (brute force would
require 280.)"

•  In August 2005, same group lowered the threshold to
263."

•  May lead to more attacks…"

Uses material from S. Zdancewic/C. Gunter

Problems with Shared Key Crypto

•  Compromised key means interceptors can decrypt
any ciphertext they’ve acquired.
–  Change keys frequently to limit damage

•  Distribution of keys is problematic
–  Keys must be transmitted securely
–  Use couriers?
–  Distribute in pieces over separate channels?

•  Number of keys is O(n2) where n is # of participants
•  Potentially easier to break?

Uses material from S. Zdancewic/C. Gunter

Uses material from S. Zdancewic/C. Gunter

Diffie-Hellman Key Exchange
•  Choose a prime p (publicly known)

–  Should be about 512 bits or more
•  Pick g < p (also public)

–  g must be a primitive root of p.
–  A primitive root generates the finite field p.
–  Every n in {1, 2, …, p-1} can be written as

gk mod p
–  Example: 2 is a primitive root of 5
–  20 = 1 21 = 2 22 = 4 23 = 3 (mod 5)

–  Intuitively means that it’s hard to take logarithms
base g because there are many candidates.

Uses material from S. Zdancewic/C. Gunter

Diffie-Hellman
Alice Bart

1.  Alice & Bart decide on a public prime p and primitive
root g.

“Let’s use (p, g)”
“OK”

2.  Alice chooses secret number A. Bart chooses secret
number B

3.  Alice sends Bart gA mod p.

 gA mod p

 gB mod p

4.  The shared secret is gAB mod p.

Uses material from S. Zdancewic/C. Gunter

Details of Diffie-Hellman
•  Alice computes gAB mod p because she

knows A:
– gAB mod p = (gB mod p)A mod p

•  An eavesdropper gets gA mod p and gB
mod p
– They can easily calculate gA+B mod p but

that doesn’t help.
– The problem of computing discrete

logarithms (to recover A from gA mod p) is
hard.

Uses material from S. Zdancewic/C. Gunter

Example
•  Alice and Bart agree that p=71 and g=7.
•  Alice selects a private key A=5 and

calculates a public key gA ≡ 75 ≡ 51
(mod 71). She sends this to Bart.

•  Bart selects a private key B=12 and
calculates a public key gB ≡ 712 ≡ 4
(mod 71). He sends this to Alice.

•  Alice calculates the shared secret:
S ≡ (gB)A ≡ 45 ≡ 30 (mod 71)

•  Bart calculates the shared secret
S ≡ (gA)B ≡ 5112 ≡ 30 (mod 71)

Uses material from S. Zdancewic/C. Gunter

Why Does it Work?
•  Security is provided by the difficulty of

calculating discrete logarithms.
•  Feasibility is provided by

– The ability to find large primes.
– The ability to find primitive roots for large

primes.
– The ability to do efficient modular arithmetic.

•  Correctness is an immediate
consequence of basic facts about
modular arithmetic.

Uses material from S. Zdancewic/C. Gunter

One-way Functions
•  A function is one-way if it’s

–  Easy to compute
–  Hard to invert (in the average case)

•  Examples
–  Exponentiation vs. Discrete Log
–  Multiplication vs. Factoring
–  Knapsack Packing

•  Given a set of numbers {1, 3, 6, 8, 12} find the sum of a subset
•  Given a target sum, find a subset that adds to it

•  Trapdoor functions
–  Easy to invert given some extra information
–  E.g. factoring p*q given q

Uses material from S. Zdancewic/C. Gunter

Public Key Cryptography
•  Sender encrypts using a public key
•  Receiver decrypts using a private key
•  Only the private key must be kept secret

– Public key can be distributed at will
•  Also called asymmetric cryptography
•  Can be used for digital signatures
•  Examples: RSA, El Gamal, DSA, various

algorithms based on elliptic curves

•  Used in SSL, ssh, PGP, …

Uses material from S. Zdancewic/C. Gunter

Public Key Notation
•  Encryption algorithm

 E : keyPub x plain → cipher
 Notation: K{msg} = E(K, msg)

•  Decryption algorithm
 D : keyPriv x cipher → plain
 Notation: k{msg} = D(k,msg)

•  D inverts E
 D(k, E(K, msg)) = msg

•  Use capital “K” for public keys
•  Use lower case “k” for private keys

•  Sometimes E is the same algorithm as D

Uses material from S. Zdancewic/C. Gunter

Secure Channel

KA,KB
kA

KA,KB
kB

Alice Bart

KB{Hello!}

KA{Hi!}

Uses material from S. Zdancewic/C. Gunter

Trade-offs for Public Key Crypto
•  More computationally expensive than shared

key crypto
– Algorithms are harder to implement
– Require more complex machinery

•  More formal justification of difficulty
– Hardness based on complexity-theoretic

results
•  A principal needs one private key and one

public key
– Number of keys for pair-wise

communication is O(n)

Uses material from S. Zdancewic/C. Gunter

RSA Algorithm
•  Ron Rivest, Adi Shamir, Leonard Adleman

– Proposed in 1979
– They won the 2002 Turing award for this

work

•  Has withstood years of cryptanalysis
– Not a guarantee of security!
– But a strong vote of confidence.

•  Hardware implementations: 1000 x slower
than DES

Uses material from S. Zdancewic/C. Gunter

RSA at a High Level (more later)
•  Public and private key are derived from secret prime

numbers
– Keys are typically ≥ 1024 bits

•  Plaintext message (a sequence of bits)
– Treated as a (large!) binary number

•  Encryption is modular exponentiation
•  To break the encryption, conjectured that one must

be able to factor large numbers
– Not known to be in P (polynomial time algorithms)
–  Is known to be in BQP (bounded-error, quantum

polynomial time – Shor’s algorithm)

