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CIS551 Topics 
•  Computer Security 

– Software/Languages, Computer Arch. 
– Access Control, Operating Systems 
– Threats: Vulnerabilities, Viruses 

•  Computer Networks 
– Physical layers, Internet, WWW, Applications 
– Cryptography in several forms 
– Threats: Confidentiality, Integrity, Availability 

•  Systems Viewpoint 
– Users, social engineering, insider threats 
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Sincoskie NIS model 

W.D. Sincoskie, et al. “Layer Dissonance and Closure in Networked 
Information Security” (white paper) 

You are here 

and here 

and here? 
and here? 

and here? 
and here? 
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Hash Algorithms 
•  Take a variable length string 
•  Produce a fixed length digest 

–  Typically 128-1024 bits 

•  (Noncryptographic) Examples: 
–  Parity (or byte-wise XOR) 
–  CRC (cyclic redundancy check) used in communications 
–  Ad hoc hashes used for  hash tables 

•  Realistic Example 
–  The NIST Secure Hash Algorithm (SHA) takes a message of less 

than 264 bits and produces a digest of 160 bits 

Hash 
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Cryptographic Hashes 
•  Create a hard-to-invert summary of input data 
•  Useful for integrity properties 

–  Sender computes the hash of the data, transmits data and hash 
–  Receiver uses the same hash algorithm, checks the result  

•  Like a check-sum or error detection code 
–  Uses a cryptographic algorithm internally 
–  More expensive to compute 

•  Sometimes called a Message Digest 
•  History: 

–  Message Digest (MD4 -- invented by Rivest, MD5) 
–  Secure Hash Algorithm  - 1993 - (SHA-0) 
–  Secure Hash Algorithm (SHA-1) 
–  SHA-2   (actually a family of hash algorithms with varying output 

sizes) 
–  SHA-3  - 2012 winner of competition, not yet standardized by NIST 

•  Attacks on SHA-0 + SHA-1 exist, but not SHA-2 (yet) 
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Uses of Hash Algorithms 
•  Hashes are used to protect integrity of data 

–  Virus Scanners 
–  Program fingerprinting in general 
–  Modification Detection Codes (MDC) 

•  Message Authenticity Code (MAC) 
–  Includes a cryptographic component 
–  Send (msg, hash(msg, key)) 
–  Attacker who doesn’t know the key can’t modify 

msg (or the hash) 
–  Receiver who knows key can verify origin of 

message 
•  Make digital signatures more efficient (we'll see this 

later) 
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Desirable Properties 
•  The probability that a randomly chosen message maps to an n-

bit hash should ideally be (½)n. 
–  Attacker must spend a lot of effort to be able to modify the source 

message without altering the hash value 

•  Hash functions h for cryptographic use as MDC’s fall in one or 
both of the following classes.  
–   Collision Resistant Hash Function: It should be computationally 

infeasible to find two distinct inputs that hash to a common value  
( ie. h(x) = h(y) ). 

–   One Way Hash Function: Given a specific hash value y, it should 
be computationally infeasible to find an input x such that h(x)=y. 
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Secure Hash Algorithm (SHA) 

•  Pad message so it can be divided into 512-bit blocks, 
including a 64 bit value giving the length of the original 
message. 

•  Process each block as 16 32-bit words called W(t) for 
t from 0 to 15. 

•  Expand from these 16 words to 80 words by defining 
as follows for each t from 16 to 79: 
–  W(t) := W(t-3) ⊕ W(t-8) ⊕ W(t-14) ⊕ W(t-16) 

•  Constants H0, …, H5 are initialized to special 
constants 

•  Result is final contents of H0, … , H5 
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SHA 

Chaining Variables 

Shift A left 5 bits 
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Attacks against SHA-1 
•  In early 2005, Rijmen and Oswald published an 

attack on a reduced version of SHA-1 ( 53 out of 80 
rounds ) which finds collisions with a complexity of 
fewer than 280 operations."

•  In February 2005, an attack by Xiaoyun Wang, 
Yiqun Lisa Yin, and Hongbo Yu was announced. The 
attacks can find collisions in the full version of SHA-1, 
requiring fewer than 269 operations (brute force would 
require 280.)"

•  In August 2005, same group lowered the threshold to 
263."

•  May lead to more attacks…"
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Problems with Shared Key Crypto 

•  Compromised key means interceptors can decrypt 
any ciphertext they’ve acquired. 
–  Change keys frequently to limit damage 

•  Distribution of keys is problematic 
–  Keys must be transmitted securely 
–  Use couriers? 
–  Distribute in pieces over separate channels? 

•  Number of keys is O(n2) where n is # of participants 
•  Potentially easier to break? 
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Diffie-Hellman Key Exchange 
•  Choose a prime p  (publicly known) 

–  Should be about 512 bits or more 
•  Pick g < p   (also public) 

–  g must be a primitive root of p. 
–  A primitive root generates the finite field p. 
–  Every n in {1, 2, …, p-1} can be written as 

gk mod p 
–  Example: 2 is a primitive root of 5 
–  20 = 1      21 = 2      22 = 4       23 = 3    (mod 5) 

–  Intuitively means that it’s hard to take logarithms 
base g because there are many candidates. 
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Diffie-Hellman 
Alice Bart 

1.  Alice & Bart decide on a public prime p and primitive 
root g. 

“Let’s use (p, g)” 
“OK” 

2.  Alice chooses secret number A. Bart chooses secret 
number B 

3.  Alice sends Bart gA mod p. 

    gA mod p 

    gB mod p 

4.  The shared secret is gAB mod p. 



Uses material from S. Zdancewic/C. Gunter 

Details of Diffie-Hellman 
•  Alice computes gAB mod p because she 

knows A: 
– gAB mod p  =  (gB mod p)A mod p 

•  An eavesdropper gets gA mod p and gB 
mod p 
– They can easily calculate gA+B mod p but 

that doesn’t help. 
– The problem of computing discrete 

logarithms (to recover A from gA mod p) is 
hard. 
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Example 
•  Alice and Bart agree that p=71 and g=7. 
•  Alice selects a private key A=5 and 

calculates a public key gA ≡ 75 ≡ 51 
(mod 71).  She sends this to Bart. 

•  Bart selects a private key B=12 and 
calculates a public key gB ≡ 712 ≡ 4 
(mod 71).  He sends this to Alice. 

•  Alice calculates the shared secret:  
S ≡ (gB)A ≡ 45 ≡ 30 (mod 71) 

•  Bart calculates the shared secret  
S ≡ (gA)B ≡ 5112 ≡ 30 (mod 71) 
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Why Does it Work? 
•  Security is provided by the difficulty of 

calculating discrete logarithms. 
•  Feasibility is provided by  

– The ability to find large primes. 
– The ability to find primitive roots for large 

primes. 
– The ability to do efficient modular arithmetic. 

•  Correctness is an immediate 
consequence of basic facts about 
modular arithmetic. 
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One-way Functions 
•  A function is one-way if it’s 

–  Easy to compute 
–  Hard to invert (in the average case) 

•  Examples 
–  Exponentiation  vs.  Discrete Log 
–  Multiplication vs. Factoring 
–  Knapsack Packing 

•  Given a set of numbers {1, 3, 6, 8, 12} find the sum of a subset 
•  Given a target sum, find a subset that adds to it 

•  Trapdoor functions 
–  Easy to invert given some extra information 
–  E.g. factoring p*q given q 
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Public Key Cryptography 
•  Sender encrypts using a public key 
•  Receiver decrypts using a private key 
•  Only the private key must be kept secret 

– Public key can be distributed at will 
•  Also called asymmetric cryptography 
•  Can be used for digital signatures 
•  Examples: RSA, El Gamal, DSA, various 

algorithms based on elliptic curves 

•  Used in SSL, ssh, PGP, … 
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Public Key Notation 
•  Encryption algorithm 

               E : keyPub x plain → cipher 
               Notation: K{msg} = E(K, msg) 

•  Decryption algorithm 
               D : keyPriv x cipher → plain 
               Notation: k{msg} = D(k,msg) 

•  D inverts E 
               D(k, E(K, msg)) = msg 

•  Use capital “K” for public keys 
•  Use lower case “k” for private keys 

•  Sometimes E is the same algorithm as D 
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Secure Channel 

KA,KB 
kA 

KA,KB 
kB 

Alice Bart 

KB{Hello!} 

KA{Hi!} 
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Trade-offs for Public Key Crypto 
•  More computationally expensive than shared 

key crypto 
– Algorithms are harder to implement 
– Require more complex machinery 

•  More formal justification of difficulty 
– Hardness based on complexity-theoretic 

results 
•  A principal needs one private key and one 

public key 
– Number of keys for pair-wise 

communication is O(n) 
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RSA Algorithm 
•  Ron Rivest, Adi Shamir, Leonard Adleman 

– Proposed in 1979 
– They won the 2002 Turing award for this 

work 

•  Has withstood years of cryptanalysis 
– Not a guarantee of security! 
– But a strong vote of confidence. 

•  Hardware implementations: 1000 x slower 
than DES 
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RSA at a High Level (more later) 
•  Public and private key are derived from secret prime 

numbers 
– Keys are typically ≥ 1024 bits 

•  Plaintext message (a sequence of bits) 
– Treated as a (large!) binary number 

•  Encryption is modular exponentiation 
•  To break the encryption, conjectured that one must 

be able to factor large numbers 
– Not known to be in P  (polynomial time algorithms) 
–  Is known to be in BQP (bounded-error, quantum 

polynomial time – Shor’s algorithm) 


