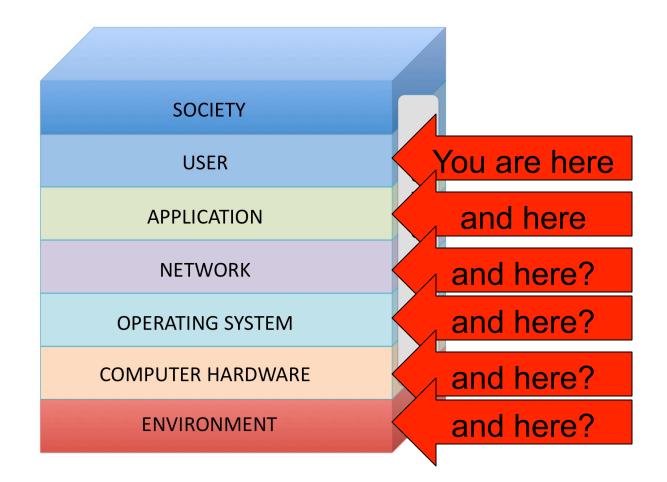
CIS551: Computer and Network Security

Jonathan M. Smith jms@cis.upenn.edu 03/24/2014

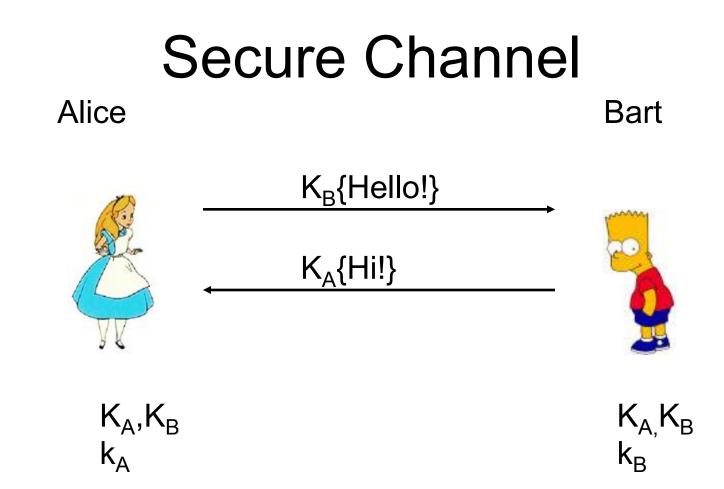
CIS551 Topics

- Computer Security
 - Software/Languages, Computer Arch.
 - Access Control, Operating Systems
 - Threats: Vulnerabilities, Viruses
- Computer Networks
 - Physical layers, Internet, WWW, Applications
 - Cryptography in several forms
 - Threats: Confidentiality, Integrity, Availability
- Systems Viewpoint
 - Users, social engineering, insider threats

Sincoskie NIS model



W.D. Sincoskie, *et al.* "Layer Dissonance and Closure in Networked Information Security" (white paper)



RSA at a High Level

- Public and private key are derived from secret prime numbers
 - Keys are typically \ge 1024 bits
- Plaintext message (a sequence of bits)
 Treated as a (large!) binary number
- Encryption is modular exponentiation
- To break the encryption, conjectured that one must be able to factor large numbers
 - Not known to be in P (polynomial time algorithms)
 - Is known to be in BQP (bounded-error, quantum polynomial time Shor's algorithm)

Number Theory: Modular Arithmetic

- Examples:
 - $-10 \mod 12 = 10$
 - 13 mod 12 = 1
 - $-(10 + 13) \mod 12 = 23 \mod 12 = 11 \mod 12$
 - $-23 \equiv 11 \pmod{12}$
 - "23 is congruent to 11 (mod 12)"
- $a \equiv b \pmod{n}$ iff a = b + kn (for some integer k)
- The *residue* of a number modulo n is a number in the range 0...
 n-1

Number Theory: Prime Numbers

- A prime number is an integer > 1 whose only factors are 1 and itself.
- Two integers are *relatively prime* if their only common factor is 1
 - gcd = greatest common divisor
 - gcd(a,b) = 1 if a,b relatively prime
 - gcd(15,12) = 3, so they' re not relatively prime
 - gcd(15,8) = 1, so they are relatively prime
- Easy to compute GCD using Euclid's Algorithm

Finite Fields (Galois Fields)

- For a prime p, the set of integers mod p forms a *finite field*
- Addition + Additive unit 0
- Multiplication * Multiplicative unit 1
- Inverses: $n * n^{-1} = 1$ for $n \neq 0$
 - Suppose p = 5, then the finite field is $\{0, 1, 2, 3, 4\}$
 - $-2^{-1} = 3$ because $2 * 3 = 1 \mod 5$
 - $4^{-1} = 4$ because $4 * 4 \equiv 1 \mod 5$
- Usual laws of arithmetic hold for modular arithmetic:
 - Commutativity, associativity, distributivity of * over +

Euler's *totient* function: φ(n)

- φ(n) is the number of positive integers less than n that are relatively prime to n
 - $\phi(12) = 4$
 - Relative primes of 12 (less than 12): {1, 5, 7, 11}
- For p a prime, $\phi(p) = p-1$. Why?
- For p,q two distinct primes, $\phi(p^*q) = (p-1)^*(q-1)$
 - There are p*q-1 numbers less than p*q
 - Factors of p*q =
 - {1*p, 2*p, ..., q*p} for a total of q of them
 - {1*q, 2*q, ..., p*q} for another p of them
 - No other numbers
 - $\phi(p^*q) = (p^*q) (p + q 1) = pq p q + 1 = (p-1)^*(q-1)$

All #s ≤ p*q ∕

don't double count p*q

— q many multiples of p

p many multiples of q

Fermat's Little Theorem

- Generalized by Euler.
- Theorem: If p is a prime then $a^p \equiv a \mod p$.
- Corollary: If gcd(a,n) = 1 then $a^{\phi(n)} \equiv 1 \mod n$.
- Easy to compute a⁻¹ mod n
 - $a^{-1} \mod n = a^{\phi(n)-1} \mod n$
 - Why? a * $a^{\phi(n)-1} \mod n$
 - $= a^{\phi(n)-1+1} \mod n$
 - $= a^{\phi(n)} \mod n$
 - $\equiv 1 \mod n$

Example of Fermat's Little Theorem

- What is the inverse of 5, modulo 7?
- 7 is prime, so $\phi(7) = 6$
- $5^{-1} \mod 7 = 5^{6-1} \mod 7$

 $= 5^{5} \mod 7$ = $(5^{2} * 5^{2} * 5) \mod 7$ = $((5^{2} \mod 7) * (5^{2} \mod 7) * (5 \mod 7)) \mod 7$ = $((4 \mod 7) * (4 \mod 7) * (5 \mod 7)) \mod 7$ = $((16 \mod 7) * (5 \mod 7)) \mod 7$ = $((2 \mod 7) * (5 \mod 7)) \mod 7$ = $(10 \mod 7) \mod 7$ = $3 \mod 7$

Rabin-Miller Primality Test

- Is n prime?
- Write n as n = (2^r)*s + 1
- Pick random number a, with $1 \le a \le n 1$
- If
 - $-a^{s} \equiv 1 \mod n$ and
 - for all j in $\{0 \dots r-1\}$, $a^{2js} \equiv -1 \mod n$
- Then return composite
- Else return probably prime

How to Generate Prime Numbers

• Many strategies, but *Rabin-Miller* primality test is often used in practice.

 $- a^{p-1} \equiv 1 \mod p$

- Efficiently checkable test that, with probability ³/₄, verifies that a number p is prime.
 - Iterate the Rabin-Miller primality test t times.
 - Probability that a composite number will slip through the test is $(\frac{1}{4})^{t}$
 - These are worst-case assumptions.
- In practice (takes several seconds to find a 512 bit prime):
 - 1. Generate a random n-bit number, p
 - 2. Set the high and low bits to 1 (to ensure it is the right number of bits and odd)
 - 3. Check that p isn't divisible by any "small" primes 3,5,7,...,<2000
 - 4. Perform the Rabin-Miller test at least 5 times.

RSA Key Generation

- Choose large, distinct primes p and q.
 - Should be roughly equal length (in bits)
- Let n = p*q
- Choose a random encryption exponent e
 - with requirement: e and (p-1)*(q-1) are relatively prime.
- Derive the decryption exponent d
 - $d = e^{-1} \mod ((p-1)^*(q-1))$
 - d is e's inverse mod ((p-1)*(q-1))
- Public key: K = (e,n) pair of e and n
- Private key: k = (d,n)
- Discard primes p and q (they' re not needed anymore)

RSA Encryption and Decryption

- Message: m
- Assume m < n
 - If not, break up message into smaller chunks
 - Good choice: largest power of 2 smaller than n
- Encryption: E((e,n), m) = m^e mod n
- Decryption: $D((d,n), c) = c^d \mod n$

Example RSA

- Choose p = 47, q = 71
- n = p * q = 3337
- (p-1)*(q-1) = 3220
- Choose e relatively prime with 3220: e = 79
 - Public key is (79, 3337)
- Find d = $79^{-1} \mod 3220 = 1019$
 - Private key is (1019, 3337)
- To encrypt m = 688232687966683
 - Break into chunks < 3337
 - 688 232 687 966 683
- Encrypt: E((79, 3337), 688) = 688⁷⁹ mod 3337 = 1570
- Decrypt: $D((1019, 3337), 1570) = 1570^{1019} \mod 3337 = 688$

Chinese Remainder Theorem

- (Or, enough of it for our purposes...)
- Suppose:
 - p and q are relatively prime
 - $-a \equiv b \pmod{p}$
 - $-a \equiv b \pmod{q}$
- Then: $a \equiv b \pmod{p^*q}$
- Proof:
 - p divides (a-b) (because a mod p = b mod p)
 - q divides (a-b)
 - Since p, q are relatively prime, p*q divides (a-b)
 - But that is the same as: $a \equiv b \pmod{p^*q}$

Proof that D inverts E

- $c^d \mod n$
- = (m^e)^d mod n
- = m^{ed} mod n
- $= m^{k^{*}(p-1)^{*}(q-1) + 1} \mod n$
- = m*m^{k*(p-1)*(q-1)} mod n
- = m mod n

= m

(definition of c)
(arithmetic)
(d inverts e mod φ(n))
(arithmetic)
(C. R. theorem)
(m < n)</pre>

 $e^{d} \equiv 1 \mod (p-1)^{*}(q-1)^{-1}$

Finished Proof

- Note: m^{p-1} ≡ 1 mod p (if p doesn't divide m)
 Why? Fermat's little theorem.
- Same argument yields: $m^{q-1} \equiv 1 \mod q$
- Implies: $m^{k^*\phi(n)+1} \equiv m \mod p$
- And $m^{k^*\phi(n)+1} \equiv m \mod q$
- Chinese Remainder Theorem implies: m^{k*}φ(n)+1 ≡ m mod n
- Note: if p (or q) divides m, then m^x = 0 mod n
 Since m < n we must have m = 0.