
CIS551: Computer and
Network Security

Jonathan M. Smith
jms@cis.upenn.edu

03/31/2014

Uses material from S. Zdancewic/C. Gunter

CIS551 Topics
•  Computer Security

– Software/Languages, Computer Arch.
– Access Control, Operating Systems
– Threats: Vulnerabilities, Viruses

•  Computer Networks
– Physical layers, Internet, WWW, Applications
– Cryptography in several forms
– Threats: Confidentiality, Integrity, Availability

•  Systems Viewpoint
– Users, social engineering, insider threats

Uses material from S. Zdancewic/C. Gunter

Sincoskie NIS model

W.D. Sincoskie, et al. “Layer Dissonance and Closure in Networked
Information Security” (white paper)

You are here

and here

and here?
and here?

and here?
and here?

Uses material from S. Zdancewic/C. Gunter

Uses material from S. Zdancewic/C. Gunter

General Definition of “Protocol”

•  A protocol is a multi-party algorithm
–  A sequence of steps that precisely specify the

actions required of the parties in order to achieve
a specified objective.

•  Important that there are multiple participants
•  Typically a situation of heterogeneous trust

–  Alice may not trust Bart
–  Bart may not trust the network

Uses material from S. Zdancewic/C. Gunter

Characteristics of Protocols
•  Every participant must know the

protocol and the steps in advance.
•  Every participant must agree to follow

the protocol
– Honest participants

•  Big problem: How to deal with bad
participants?

Uses material from S. Zdancewic/C. Gunter

Cryptographic Protocols
•  Consider communication over a network…
•  What is the threat model?

– What are the vulnerabilities?

S R T

Sender Transmission Medium Receiver

O

Observer (Attacker)

Uses material from S. Zdancewic/C. Gunter

What Can the Attacker Do?
•  Intercept them (confidentiality)
•  Modify them (integrity)
•  Fabricate other messages (integrity)
•  Replay them (integrity)

•  Block the messages (availability)
•  Delay the messages (availability)
•  Cut the wire (availability)
•  Flood the network (availability)

Uses material from S. Zdancewic/C. Gunter

Dolev-Yao Model
•  Simplifies reasoning about protocols

–  doesn't require reduction to computational complexity
•  Treat cryptographic operations as "black box"
•  Given a message M = (c1,c2,c3,…) attacker can

deconstruct message into components c1 c2 c3
•  Given a collection of components c1, c2, c3, … attacker

can forge a message using a subset of the components
(c1,c2,c3)

•  Given an encrypted object K{c}, attacker can learn c only
if attacker knows decryption key corresponding to K

•  Attacker can encrypt components by using:
–  fresh keys, or
–  keys they have learned during the attack

Uses material from S. Zdancewic/C. Gunter

Formal Dolev-Yao Model
•  A message is a finite sequence of :

–  Atomic strings, nonces, Keys (public or private), Encrypted
Submessages

 M ::= a | n | K | k | K{M} | k{M} | M,M

•  The attacker's (or observer's) state is a set S of messages:

–  The set of all message & message components that the attacker
has seen -- the attacker's "knowledge"

–  Seeing a new message sent by an honest participant adds the new
message components to the attacker's knowledge

–  If M1, M2 ∈ S then M1 ∈ S and M2 ∈ S
–  If KA{M} ∈ S and KA ∈ S then M ∈ S
–  If KA{M} ∈ S and kA ∈ S then M ∈ S
–  If M ∈ S and K ∈ S then K{M} ∈ S
–  If M ∈ S and k ∈ S then k{M} ∈ S
–  If k is a “fresh” key, then k ∈ S

S closed under these
operations

Uses material from S. Zdancewic/C. Gunter

Using the Dolev-Yao model
•  Given a description of a protocol:

–  Sequence of messages to be exchanged among honest
parties.

•  "Simulate" an attacked version of the protocol:
–  At each step, the attacker's knowledge state is the (closure

of the) knowledge of the prior state plus the new message
–  An active attacker can create (and insert into the

communication stream) any message M composed from the
knowledge state S:

•  M = M1,M2,…,Mn such that Mi ∈ S

•  See if the "attacked" protocol leads to any bad state
–  Example: if K is supposed to be kept secret but K ∈ S at

some point, the attacker has learned the key.

Uses material from S. Zdancewic/C. Gunter

Authentication
•  For honest parties, the claimant A is

able to authenticate itself to the verifier
B. That is, B will complete the protocol
having accepted A’s identity.

Alice Bart

Uses material from S. Zdancewic/C. Gunter

Shared-Key Authentication

•  Assume Alice & Bart already share a key KAB.
– The key might have been decided upon in person

or obtained from a trusted 3rd party.
•  Alice & Bart now want to communicate over a

network, but first wish to authenticate to each
other

Alice Bart

KAB KAB

Uses material from S. Zdancewic/C. Gunter

Solution 1: Weak Authentication

•  Alice sends Bart KAB.
– KAB acts as a password.

•  The secret (key) is revealed to passive
observers.

•  Only works one-way.
– Alice doesn’t know she’s talking to Bart.

Alice Bart

KAB KAB

KAB

Uses material from S. Zdancewic/C. Gunter

Solution 2: Strong Authentication

•  Protocol doesn’t reveal the secret.
•  Challenge/Response

– Bart requests proof that Alice knows the secret
– Alice requires proof from Bart
– RA and RB are randomly generated numbers

Alice Bart

KAB KAB

I’m Alice

Challenge: Encrypt RB

Response: KAB{RB}

Challenge: Encrypt RA

Response: KAB{RA}

Uses material from S. Zdancewic/C. Gunter

(Flawed) Optimized Version

•  Why not send more information in each
message?
– This seems like a simple optimization.

•  But, it’s broken… how?

Alice Bart

KAB KAB

Alice, RA

 RB, KAB{RA}

 KAB{RB}

Uses material from S. Zdancewic/C. Gunter

Attack: Marvin can Masquerade as Alice

•  Marvin pretends to take the role of Alice in
two runs of the protocol.
– Tricks Bart into doing Alice’s part of the

challenge!
–  Interleaves two instances of the same protocol.

Bart

KAB

Alice, RA

 RB, KAB{RA}

 KAB{RB}

Alice, RB

 R’B, KAB{RB}

Uses material from S. Zdancewic/C. Gunter

Lessons
•  Protocol design is tricky and subtle

– “Optimizations” aren’t necessarily good
•  Need to worry about:

– Multiple instances of the same protocol
running in parallel

–  Intruders that play by the rules, mostly
•  General principle:

– Don’t do anything more than necessary
until confidence is built.

–  Initiator should prove identity before
responder takes action (like encryption…)

Uses material from S. Zdancewic/C. Gunter

Recap: Challenge Response

•  Protocol doesn’t reveal the secret.
•  Challenge/Response

– Bart requests proof that Alice knows the secret
– Alice requires proof from Bart
– RA and RB are randomly generated numbers

Alice Bart

KAB KAB

I’m Alice

Challenge: Encrypt RB

Response: KAB{RB}

Challenge: Encrypt RA

Response: KAB{RA}

Uses material from S. Zdancewic/C. Gunter

Threats
•  Transferability: B cannot reuse an

identification exchange with A to
successfully impersonate A to a third party
C.

•  Impersonation: The probability is negligible
that a party C distinct from A can carry out
the protocol in the role of A and cause B to
accept it as having A’s identity.

Uses material from S. Zdancewic/C. Gunter

Assumptions
•  A large number of previous authentications

between A and B may have been observed.

•  The adversary C has participated in previous
protocol executions with A and/or B.

•  Multiple instances of the protocol, possibly
instantiated by C, may be run
simultaneously.

Uses material from S. Zdancewic/C. Gunter

Primary Attacks
•  Replay:

–  Reusing messages (or parts of messages) inappropriately
•  Interleaving:

–  Mixing messages from different runs of the protocol.
•  Reflection:

–  Sending a message intended for destination A to B instead.
•  Chosen plaintext:

–  Choosing the data to be encrypted
•  Forced delay:

–  Denial of service attack -- taking a long time to respond
–  Not captured by Dolev Yao model

Uses material from S. Zdancewic/C. Gunter

Primary Controls
•  Replay:

–  use of challenge-response techniques
–  embed target identity in response.

•  Interleaving
–  link messages in a session with chained (per-session) nonces.

•  Reflection:
–  embed identifier of target party in challenge response
–  use asymmetric message formats
–  use asymmetric keys.

•  Chosen text:
–  embed self-chosen random numbers (“confounders”) in responses
–  use “zero knowledge” techniques (e.g., ZKPP)

•  Forced delays:
–  use nonces with short timeouts
–  use timestamps, in addition to other techniques.

Uses material from S. Zdancewic/C. Gunter

Replay
•  Replay: the threat in which a transmission is

observed by an eavesdropper who
subsequently reuses it as part of a protocol,
possibly to impersonate the original sender.
– Example: Monitor the first part of a telnet session to

obtain a sequence of transmissions sufficient to get
a log-in.

•  Three strategies for defeating replay attacks
– Nonces
– Timestamps
– Sequence numbers.

Uses material from S. Zdancewic/C. Gunter

Nonces: Random Numbers
•  Nonce: A number chosen at random from a

range of possible values.
– Each generated nonce is valid only once.

•  In a challenge-response protocol, nonces are
used as follows:
– The verifier chooses a (new) random number and

provides it to the claimant.
– The claimant performs an operation on it showing

knowledge of a secret.
– This information is bound inseparably to the random

number and returned to the verifier for examination.
– A timeout period is used to ensure “freshness”.

Uses material from S. Zdancewic/C. Gunter

Time Stamps
•  The claimant sends a message with a

timestamp.
•  The verifier checks that it falls within an

acceptance window of time.
•  The last timestamp received is held, and

identification requests with older timestamps
are ignored.

•  Good only if clock synchronization is close
enough for acceptance window.

Uses material from S. Zdancewic/C. Gunter

Sequence Numbers
•  Sequence numbers provide a sequential or

monotonic counter on messages.
•  If a message is replayed and the original

message was received, the replay will have an
old or too-small sequence number and be
discarded.

•  Cannot detect forced delay.
•  Difficult to maintain when there are system

failures.

Uses material from S. Zdancewic/C. Gunter

Unilateral Symmetric Key
•  Unilateral = one way authentication
•  Unilateral authentication with nonce.

n

KAB{n, B}

A

Uses material from S. Zdancewic/C. Gunter

Mutual Symmetric Key
•  Mutual = two way authentication
•  Using Nonces:

nB

KAB{nA, nB, B}

KAB{nA, A}

A

Uses material from S. Zdancewic/C. Gunter

Mutual Public Key Decryption
•  Exchange nonces

KB{nA, A}

KA {nA, nB}

nB

Uses material from S. Zdancewic/C. Gunter

Digital Signatures: Requirements I
•  A mark that only one principal can make, but

others can easily recognize
•  Unforgeable

–  If principal P signs a message M with signature
SP{M} it is impossible for any other principal to
produce the pair (M, SP{ M}).

•  Authentic
–  If R receives the pair (M, SP{M}), purportedly from

P, R can check that the signature really is from P.

Uses material from S. Zdancewic/C. Gunter

Digital Signatures: Requirements II
•  Not alterable

–  After being transmitted, (M,SP{ M}) cannot be changed by P, R, or
an interceptor.

•  Not reusable
–  A duplicate message will be detected by the recipient.

•  Nonrepudiation:
–  P should not be able to claim they didn't sign something when in

fact they did.
–  (Related to unforgeability: If P can show that someone else could

have forged P's signature, they can repudiate ("refuse to
acknowledge") the validity of the signature.)

