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CIS551 Topics 
•  Computer Security 

– Software/Languages, Computer Arch. 
– Access Control, Operating Systems 
– Threats: Vulnerabilities, Viruses 

•  Computer Networks 
– Physical layers, Internet, WWW, Applications 
– Cryptography in several forms 
– Threats: Confidentiality, Integrity, Availability 

•  Systems Viewpoint 
– Users, social engineering, insider threats 
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Sincoskie NIS model 

W.D. Sincoskie, et al. “Layer Dissonance and Closure in Networked 
Information Security” (white paper) 

You are here 

and here 

and here? 
and here? 

and here? 
and here? 
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General Definition of “Protocol” 

•  A protocol is a multi-party algorithm 
–  A sequence of steps that precisely specify the 

actions required of the parties in order to achieve 
a specified objective. 

•  Important that there are multiple participants 
•  Typically a situation of heterogeneous trust 

–  Alice may not trust Bart 
–  Bart may not trust the network 
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Characteristics of Protocols 
•  Every participant must know the 

protocol and the steps in advance. 
•  Every participant must agree to follow 

the protocol 
– Honest participants 

•  Big problem: How to deal with bad 
participants? 
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Cryptographic Protocols 
•  Consider communication over a network… 
•  What is the threat model? 

– What are the vulnerabilities? 

S R T 

Sender Transmission Medium Receiver 

O 

Observer (Attacker) 
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What Can the Attacker Do? 
•  Intercept them (confidentiality) 
•  Modify them (integrity) 
•  Fabricate other messages (integrity) 
•  Replay them (integrity) 

•  Block the messages (availability) 
•  Delay the messages (availability) 
•  Cut the wire (availability) 
•  Flood the network (availability) 
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Dolev-Yao Model 
•  Simplifies reasoning about protocols  

–  doesn't require reduction to computational complexity 
•  Treat cryptographic operations as "black box" 
•  Given a message M = (c1,c2,c3,…)  attacker can 

deconstruct message into components c1 c2 c3 
•  Given a collection of components c1, c2, c3, … attacker 

can forge a message using a subset of the components 
(c1,c2,c3) 

•  Given an encrypted object K{c}, attacker can learn c only 
if attacker knows decryption key corresponding to K 

•  Attacker can encrypt components by using:  
–  fresh keys, or  
–  keys they have learned during the attack 
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Formal Dolev-Yao Model 
•  A message is a finite sequence of : 

–  Atomic strings, nonces, Keys (public or private), Encrypted 
Submessages 

 M ::=  a  |   n  |  K   |  k  |   K{M}  |   k{M}   |   M,M 
 
•  The attacker's  (or observer's)  state is a set S of messages: 

–  The set of all message & message components that the attacker 
has seen -- the attacker's "knowledge" 

–  Seeing a new message sent by an honest participant adds the new 
message components to the attacker's knowledge 

–  If   M1, M2 ∈ S   then   M1 ∈ S   and   M2 ∈ S  
–  If   KA{M} ∈ S   and   KA ∈ S   then   M ∈ S  
–  If   KA{M} ∈ S   and kA ∈ S   then  M ∈ S  
–  If   M ∈ S  and K ∈ S   then K{M} ∈ S  
–  If   M ∈ S   and k ∈ S   then k{M} ∈ S  
–  If   k is a “fresh” key, then k ∈ S 
  

S closed under these 
operations 
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Using the Dolev-Yao model 
•  Given a description of a protocol: 

–  Sequence of messages to be exchanged among honest 
parties. 

•  "Simulate" an attacked version of the protocol: 
–  At each step, the attacker's knowledge state is the (closure 

of the) knowledge of the prior state plus the new message 
–  An active attacker can create (and insert into the 

communication stream) any message M composed from the 
knowledge state S: 

•  M = M1,M2,…,Mn   such that Mi ∈ S  

•  See if the "attacked" protocol leads to any bad state 
–  Example:    if K is supposed to be kept secret but K ∈ S at 

some point, the attacker has learned the key. 
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Authentication 
•  For honest parties, the claimant A is 

able to authenticate itself to the verifier 
B.  That is, B will complete the protocol 
having accepted A’s identity. 

Alice Bart 
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Shared-Key Authentication 

•  Assume Alice & Bart already share a key KAB. 
– The key might have been decided upon in person 

or obtained from a trusted 3rd party. 
•  Alice & Bart now want to communicate over a 

network, but first wish to authenticate to each 
other 

Alice Bart 

KAB KAB 
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Solution 1: Weak Authentication 

•  Alice sends Bart KAB. 
– KAB acts as a password. 

•  The secret (key) is revealed to passive 
observers. 

•  Only works one-way. 
– Alice doesn’t know she’s talking to Bart. 

Alice Bart 

KAB KAB 

KAB 
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Solution 2: Strong Authentication 

•  Protocol doesn’t reveal the secret. 
•   Challenge/Response 

– Bart requests proof that Alice knows the secret 
– Alice requires proof from Bart 
– RA and RB are randomly generated numbers 

Alice Bart 

KAB KAB 

I’m Alice 

Challenge: Encrypt RB 

Response: KAB{RB} 

Challenge: Encrypt RA 

Response: KAB{RA} 
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(Flawed) Optimized Version 

•  Why not send more information in each 
message? 
– This seems like a simple optimization. 

•  But, it’s broken…  how? 

Alice Bart 

KAB KAB 

Alice, RA 

        RB, KAB{RA} 
 
        KAB{RB} 
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Attack: Marvin can Masquerade as Alice 

•  Marvin pretends to take the role of Alice in 
two runs of the protocol. 
– Tricks Bart into doing Alice’s part of the 

challenge! 
–  Interleaves two instances of the same protocol. 

Bart 

KAB 

Alice, RA 

        RB, KAB{RA} 
 

        KAB{RB} 

Alice, RB 

        R’B, KAB{RB} 
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Lessons 
•  Protocol design is tricky and subtle 

– “Optimizations” aren’t necessarily good 
•  Need to worry about: 

– Multiple instances of the same protocol 
running in parallel 

–  Intruders that play by the rules, mostly 
•  General principle: 

– Don’t do anything more than necessary 
until confidence is built. 

–  Initiator should prove identity before 
responder takes action (like encryption…) 
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Recap: Challenge Response  

•  Protocol doesn’t reveal the secret. 
•   Challenge/Response 

– Bart requests proof that Alice knows the secret 
– Alice requires proof from Bart 
– RA and RB are randomly generated numbers 

Alice Bart 

KAB KAB 

I’m Alice 

Challenge: Encrypt RB 

Response: KAB{RB} 

Challenge: Encrypt RA 

Response: KAB{RA} 
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Threats 
•  Transferability: B cannot reuse an 

identification exchange with A to 
successfully impersonate A to a third party 
C. 

•  Impersonation: The probability is negligible 
that a party C distinct from A can carry out 
the protocol in the role of A and cause B to 
accept it as having A’s identity. 
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Assumptions 
•  A large number of previous authentications 

between A and B may have been observed. 

•  The adversary C has participated in previous 
protocol executions with A and/or B. 

•  Multiple instances of the protocol, possibly 
instantiated by C, may be run 
simultaneously. 
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Primary Attacks 
•  Replay: 

–  Reusing messages (or parts of messages) inappropriately 
•  Interleaving: 

–  Mixing messages from different runs of the protocol. 
•  Reflection: 

–  Sending a message intended for destination A to B instead. 
•  Chosen plaintext: 

–  Choosing the data to be encrypted  
•  Forced delay: 

–  Denial of service attack -- taking a long time to respond 
–  Not captured by Dolev Yao model 
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Primary Controls 
•  Replay:  

–  use of challenge-response techniques  
–  embed target identity in response. 

•  Interleaving 
–  link messages in a session with chained (per-session) nonces. 

•  Reflection: 
–  embed identifier of target party in challenge response 
–  use asymmetric message formats 
–  use asymmetric keys. 

•  Chosen text:  
–  embed self-chosen random numbers (“confounders”) in responses 
–  use “zero knowledge” techniques (e.g., ZKPP) 

•  Forced delays: 
–  use nonces with short timeouts 
–  use timestamps, in addition to other techniques. 
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Replay 
•  Replay: the threat in which a transmission is 

observed by an eavesdropper who 
subsequently reuses it as part of a protocol, 
possibly to impersonate the original sender. 
– Example: Monitor the first part of a telnet session to 

obtain a sequence of transmissions sufficient to get 
a log-in.   

•  Three strategies for defeating replay attacks 
– Nonces 
– Timestamps 
– Sequence numbers. 
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Nonces: Random Numbers 
•  Nonce: A number chosen at random from a 

range of possible values. 
– Each generated nonce is valid only once. 

•  In a challenge-response protocol, nonces are 
used as follows: 
– The verifier chooses a (new) random number and 

provides it to the claimant. 
– The claimant performs an operation on it showing 

knowledge of a secret. 
– This information is bound inseparably to the random 

number and returned to the verifier for examination. 
– A timeout period is used to ensure “freshness”. 
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Time Stamps 
•  The claimant sends a message with a 

timestamp. 
•  The verifier checks that it falls within an 

acceptance window of time. 
•  The last timestamp received is held, and 

identification requests with older timestamps 
are ignored. 

•  Good only if clock synchronization is close 
enough for acceptance window. 
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Sequence Numbers 
•  Sequence numbers provide a sequential or 

monotonic counter on messages. 
•  If a message is replayed and the original 

message was received, the replay will have an 
old or too-small sequence number and be 
discarded. 

•  Cannot detect forced delay. 
•  Difficult to maintain when there are system 

failures. 
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Unilateral Symmetric Key 
•  Unilateral = one way authentication 
•  Unilateral authentication with nonce. 

n 

KAB{n, B} 

A 
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Mutual Symmetric Key 
•  Mutual = two way authentication 
•  Using Nonces: 

nB 

KAB{nA, nB, B} 

KAB{nA, A} 

A 
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Mutual Public Key Decryption 
•  Exchange nonces 

KB{nA, A} 

KA {nA, nB} 

nB 



Uses material from S. Zdancewic/C. Gunter 

Digital Signatures: Requirements I 
•  A mark that only one principal can make, but 

others can easily recognize 
•  Unforgeable 

–  If principal P signs a message M with signature 
SP{M} it is impossible for any other principal to 
produce the pair (M, SP{ M}). 

•  Authentic 
–  If R receives the pair (M, SP{M}), purportedly from 

P, R can check that the signature really is from P. 
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Digital Signatures: Requirements II  
•  Not alterable 

–  After being transmitted, (M,SP{ M}) cannot be changed by P, R, or 
an interceptor. 

•  Not reusable 
–  A duplicate message will be detected by the recipient. 

•  Nonrepudiation: 
–  P should not be able to claim they didn't sign something when in 

fact they did. 
–  (Related to unforgeability: If P can show that someone else could 

have forged P's signature, they can repudiate ("refuse to 
acknowledge") the validity of the signature.) 


