CIS551: Computer and Network Security

Jonathan M. Smith jms@cis.upenn.edu 04/02/2014

CIS551 Topics

- Computer Security
 - Software/Languages, Computer Arch.
 - Access Control, Operating Systems
 - Threats: Vulnerabilities, Viruses
- Computer Networks
 - Physical layers, Internet, WWW, Applications
 - Cryptography in several forms
 - Threats: Confidentiality, Integrity, Availability
- Systems Viewpoint
 - Users, social engineering, insider threats

Sincoskie NIS model

W.D. Sincoskie, *et al.* "Layer Dissonance and Closure in Networked Information Security" (white paper)

Digital Signatures: Requirements I

- A mark that only one principal can make, but others can easily recognize
- Unforgeable
 - If principal P signs a message M with signature $S_P\{M\}$ it is impossible for any other principal to produce the pair (M, $S_P\{M\}$).
- Authentic
 - If R receives the pair (M, $S_P{M}$), purportedly from P, R can check that the signature really is from P.

Digital Signatures: Requirements II

- Not alterable
 - After being transmitted, (M,S_P{ M}) cannot be changed by P, R, or an interceptor.
- Not reusable
 - A duplicate message will be detected by the recipient.
- Nonrepudiation:
 - P should not be able to claim they didn't sign something when in fact they did.
 - (Related to unforgeability: If P can show that someone else could have forged P's signature, they can repudiate ("refuse to acknowledge") the validity of the signature.)

Digital Signatures with Shared Keys

Tom is a trusted 3rd party (or arbiter).

Authenticity: Tom verifies Alice's message, Bart trusts Tom. **No Forgery:** Bart can keep msg, K_{AT}{msg}, which only Alice (or Tom, but he's trusted not to!) could produce

Preventing Reuse and Alteration

- To prevent reuse of the signature

 Incorporate a *timestamp* (or sequence number)
- Alteration
 - If a block cipher is used, recipient could splicetogether new messages from individual blocks.
- To prevent alteration
 - Timestamp must be part of each block
 - Or... use cipher block chaining

Digital Signatures with Public Keys

- Assumes the algorithm is *commutative*:
 D(E(M, K), k) = E(D(M, k), K)
- Let K_A be Alice's public key
- Let k_A be her private key
- To sign msg, Alice sends D(msg, k_A)
- Bart can verify the message with Alice's public key
- Works! RSA: $(m^e)^d = m^{ed} = (m^d)^e$

Digital Signatures with Public Keys

Alice

Bart

Advantages:

- No trusted 3rd party (e.g., Tom)
- Simpler algorithm.

But:

- More expensive
- No confidentiality Uses material from S. Zdancewic/C. Gunter

Variations on Public Key Signatures

- Timestamps again (to prevent replay)
 - Signed certificate valid for only some time.
- Add an extra layer of encryption to guarantee confidentiality
 - Alice sends $K_B\{k_A\{msg\}\}\$ to Bart
- Combined with hashes:
 - Send (msg, k_A{MD5(msg)})

Unilateral Authentication: Signatures

- $S_A{M}$ is A's signature on message M.
- Unilateral authentication with nonces:

The n_A prevents chosen plaintext attacks.

Multiple Use of Keys

- Risky to use keys for multiple purposes.
- Using an RSA key for both authentication and signatures may allow a chosen-text attack.
- B attacker/verifier, n_B=H(M) for some message M.

Arbitrated Protocols

- Tom is an *arbiter*
 - Disinterested in the outcome (doesn't play favorites)
 - Trusted by the participants (Trusted 3rd party)
 - Protocol can't continue without T's participation

Arbitrated Protocols (Continued)

- Real-world examples:
 - Lawyers, Bankers, Notary Public
- Issues:
 - Finding a trusted 3rd party
 - Additional resources needed for the arbitrator
 - Delay (introduced by arbitration)
 - Arbitrator might become a bottleneck
 - Single point of vulnerability: attack the arbitrator!

Adjudicated Protocols

- Alice and Bart record an *audit log*
- Only in exceptional circumstances do they contact a trusted 3rd party. (3rd party is not always needed.)
- Tom as the *adjudicator* can inspect the evidence and determine whether the protocol was carried out fairly

- No trusted 3rd party involved.
- Participants can determine whether other parties cheat.
- Protocol is constructed so that there are no possible disputes of the outcome.