
SOFTWARE DESIGN
MATERIALS: CHAPTERS 12-16 PRESSMAN’S BOOK
SOFTWARE ENGINEERING: A PRACTITIONER’S APPROACH

What is Design?

A blue-print for the software
product

Designing is NOT Coding

Should not start coding
before having a good idea
of the design, or will need to
step back to refactor

Components of the Design
Model

Architecture
Design

Interface
Design

Component
Design

Class
Design

Why is Design Important?

Can we skip this step?

Design Process: Goal

Establish the design model

Should be complete

Should satisfy requirements

Should be documented, readable and clear

Design Quality
• Functionality: A design should support all the functions needed

given the requirements. It should be complete and functional.

•Modularity: A design should be modular; that is, the software
should be logically partitioned into elements or subsystems

•Modifiability: A design should enable change easily and effectively

• Extensibility: A design should be flexible to enable additions of
new features easily

• Reliability/Maintainability: A design should enable quick
identification of problems and fixes.

• Reusability: A design should enable the reuse of its components

Characteristics of good designs
• A design should exhibit an architecture that

• as been created using recognizable architectural styles or patterns,
• is composed of components that exhibit good design characteristics and
• can be implemented in an evolutionary fashion

• A design should contain distinct representations of data, architecture,
interfaces, and components.

• A design should lead to data structures that are appropriate for the classes
to be implemented and are drawn from recognizable data patterns.

• A design should lead to components that exhibit independent functional
characteristics

Let’s take a look at the Code and Design Review
Document

Modularity

So how do you design for good modularity?

Achieving good modular
design

Effective modular design consist of three things:
Functional Independence
Cohesion
Coupling

Functional Independence
Functional independence is achieved by developing modules with

"single-minded“ function and an "aversion" to excessive
interaction with other modules.

In other words - each module addresses a specific sub-function of
requirements and has a simple interface when viewed from
other parts of the program structure.

Independence is important –
• Easier to develop
• Easier to Test and maintain
• Error propagation is reduced
• Reusable module

Coupling and Cohesion
Coupling: is the degree of interdependence
between modules or software components

Cohesion: is the degree to which elements
in the module belongs together

Architecture Design

Software Architecture is: “The software
architecture of a program or computing system is
the structure or structures of the system, which
comprise the software components, the externally
visible properties of those components, and the
relationships among them.”

Architectural Styles and
Patterns
Style describes a system category that encompasses

• A set of components (e.g., a database, computational
modules) that perform a function required by a system;

• a set of connectors that enable “communication, co-
ordinations and cooperation” among components;

• constraints that define how components can be integrated to
form the system

• semantic models that enable a designer to understand the
overall properties of a system

Pattern is a general, reusable solution to a commonly occurring
problem in software architecture within a given context

Architectural Styles

Data Centered Architecture

Pipe-Filter Architecture

Object Oriented
Architecture

Layered Architecture

Architecture Design and
the Agile Process

Responsibility Driven Architecture. A process by
which an architect is assigned to work with the
team and product owner to decide when to make
architectural decisions or changes 
 
Resource: Stuart Blair, Richard Watt, Tim Cull,
"Responsibility-Driven Architecture", IEEE Software,
vol.27, no. 2, pp. 26-32, March/April 2010,

Architectural Patterns

Model-View-Controller

Process Manager

Observer Pattern

More …
• Layers, Pipes & Filters, Broker – POSA book series  

Resource: Buschmann F., Meunier R., Rohnert H., Sommerlad P., and Stal M., Pattern
Oriented Software Architecture – a System of Patterns. Wiley, 1996.

• Patterns of Enterprise Application Architecture such as Model-View-Controller, Domain
Model, Active Record  
Resource: Fowler M., Patterns of Enterprise Application Architecture. Addison Wesley, 2003

• Domain-Driven Design patterns such as Bounded Context 
Resource: Evans E., Domain-Driven Design. Tackling Complexity in the Heart of Software.
Addison Wesley, 2003.

• Enterprise Integration Patterns such as Messaging, Channel 
Resource: Hohpe G., Woolf, B., Enterprise Integration Patterns. Addison Wesley, 2004.

• Adapter, Observer and other design patterns 
Resource: Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

Materials

“Handbook of Software Architecture” collects
such architectural patterns: http://
handbookofsoftwarearchitecture.com/?cat=14

http://handbookofsoftwarearchitecture.com/?cat=14

Component Design
Guidelines

Open Closed Principle (OCP) “A module should be open for extension
but closed for modification” - Example handling sensors with an
abstraction Detector

Liskov Substitution Principle (LSP) “Subclasses should be substitutable
for their base classes”

Dependency inversion Principle (DIP) “Depend on abstractions. Do not
depend on concretions” abstractions are what you use to extend

Common Closure Principle (CCP) “Classes that change together belong
together”

The Common Reuse Principle (CRP) “Classes that aren’t reused
together should not be grouped together”

Interface Design Guidelines

Place user in control

Reduce user’s memory and cognitive load

Make interface consistent and intuitive

Design Patterns used for
component and UI Design

