
CS 170 Algorithms
Spring 2014 Elchanan Mossel HW 2

1. (20 pts.) (Quadratic Residues)

(a) (8 points). Since a is a non-zero quadratic residue mod N, there exists x ∈ {1, . . . ,N−1}
such that x2 ≡ a mod N (because a 6= 0 implies we cannot have x = 0). Notice that we also
have (N− x)2 ≡ x2 mod N ≡ a mod N, and also that (N− x) ∈ {1, . . . ,N−1}. We will now
show that when N is odd, x 6= N − x. For if not, then we have x = N − x, so that N = 2x
which contradicts the fact that N is odd. Thus, we have at least two distinct values for
x ∈ {1,2, . . . ,N−1} which satisfy x2 ≡ a mod N.
We will now show that these are the only possible solutions. Consider any other value
y ∈ {1,2, . . . ,N−1} such that y2 ≡ a mod N. We then have x2 ≡ y2 mod N, so that N divides
x2− y2 = (x− y)(x+ y). Since N is a prime, this implies that N divides at least one of x− y
and x+ y. We now consider both these cases.
N divides x− y. If N divides x− y, then we see that x≡ y mod N which implies that x = y,

since both x and y are in the set {1,2, . . . ,N−1}.
N divides x+ y. Since both x and y are in {1,2, . . . ,N−1}, we have 0 < x+ y < 2N, so that

N can divide x+ y if and only if x+ y = N. But then we have y = N− x.
We therefore see that x and N−x are the only possible solutions. This completes the proof.

(b) (6 points). Clearly 0 is a quadratic residue since 02 = 0 mod N. Now let S= {1,2, . . . ,(N−1)/2}.
Notice that since N is odd, we have |S| = (N−1)/2. From the first part, we know that for
an odd prime N, and for x,z ∈ {1,2, . . . ,N−1}, we have x2 ≡ z2 mod N if and only if either
x = z or x+ z = N. Since x+ z < N for x,z ∈ S, this implies that for two distinct elements x
and z in S, we have x2 6≡ z2 mod N. We therefore conclude that the set T =

{
x2|x ∈ S

}
is of

size |S| = (N−1)/2. Since every element of T is a non-zero quadratic residue, this shows
that there are at least (N−1)/2 quadratic residues.
We will now show that all the non-zero quadratic residues are contained in T . Consider
any non-zero quadratic residue a≡ y2 mod N, where y∈ {1,2, . . . ,N−1}. If y∈ S, then a∈ T ,
by definition. Otherwise, we have (N + 1)/2 ≤ y ≤ N− 1, so that N− y ∈ S, and hence a ≡
(N−y)2 mod N is again in T . Thus, the set T contains all the non-zero quadratic residues.
We therefore get that the number of all quadratic residues is |{0}∪T | = 1+(N− 1)/2 =
(N +1)/2, as required.

(c) (6 points). Clearly we cannot take N = 2 or an odd prime. We take N = 8, and notice that
for any odd number b, b2 ≡ 1 mod 8. Thus, the equation x2 = 1 mod 8 has four solutions
{1,3,5,7} in the set {0,1,2, . . . ,7}.

2. (10 pts.) (These exponents are large, they contain multitudes)

(a) (4 points). We first note the prime factorization of 35: 35 = 5×7. Thus, an integer M is
divisible by 35 if and only if M is divisible by both 5 and 7. We also know from Fermat’s
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little theorem that for a coprime to 5, we have a4 ≡ 1 mod 5. Using this, we now calculate:

20142015 mod 5≡ 42012+3 mod 5≡
(
4503)4 ·43 mod 5≡ 1 ·43 mod 5≡ 4 mod 5. (1)

Similarly,

20122013 mod 5≡ 22012+1 mod 5≡
(
2503)4 ·21 mod 5≡ 1 ·2 mod 5≡ 2 mod 5. (2)

Denoting 20142015− 20122013 by M, we then combine eqs. (1), (2) to get that M ≡ 4− 2 ≡ 2
mod 5. Thus, 5 does not divide M, and hence 35 does not either.

(b) (6 points). From Fermat’s little theorem, we know that if a is coprime to 5, we have a4 ≡ 1
mod 5 (since 5 is a prime). To use this fact, we would like to represent E ··= 17070 as 4s+ t,
for some positive integer s and some t ∈ {0,1,2,3}. Given such a representation, we would
get from Fermat’s little that

2E mod 5≡ (2s)4 ·2t mod 5≡ 1 ·2t mod 5. (3)

In order to determine t ≡ E mod 4, we note that E = 17070 = (2 ·85)2·35 =
(
(2 ·85)2

)35
, so

that
E mod 4≡

(
(2 ·85)2

)35
mod 4≡

(
4 ·852)35

mod 4≡ 0 mod 4.

Thus, we get that t = 0. Substituting this in eq. (3), we get that 2E ≡ 1 mod 5, so that the
remainder when it is divided by 5 is 1.

3. (10 pts.) (No compromises)
Since d is the multiplicative inverse of e mod (p−1)(q−1) , we know that,

ed−1 = 0 mod (p−1)(q−1),

which means for some positive integer k,

ed−1 = k(p−1)(q−1) (4)

=⇒ k =
ed−1

(p−1)(q−1)

Since d < (p−1)(q−1), and e = 3, we get

k <
3(p−1)(q−1)−1

(p−1)(q−1)
< 3− 1

(p−1)(q−1)
,

which implies that k ∈ {1,2}. Now, for each k ∈ {1,2} we can use eq. (4), which now has only
2 unknowns (p and q) in conjunction with equation N = pq, to solve for p and q. To do this,
consider one of the two fixed values of k, and substitute N = pq,e = 3 into eq. (4) to obtain the
following quadratic equation for p:

kp2− ck p+ kN = 0, where ck ··= k(N +1)− (3d−1),

which has the solutions

pk =
ck±

√
c2

k−4k2N

2k
.
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Using the result of Problem 2, we can efficiently determine if the solutions pk are integral for a
given value of k. Our arguments above show that at least one of the pk’s will yield the desired
non-trivial factors of N.

4. (22 pts.) (Recurrences)

a) T (n) = 2T (n/3)+1 = Θ(nlog3 2) by the Master theorem.
b) T (n) = 5T (n/4)+n = Θ(nlog4 5) by the Master theorem.
c) T (n) = 7T (n/7)+n = Θ(n log7 n) by the Master theorem.
d) T (n) = 9T (n/3)+n2 = Θ(n2 log3 n) by the Master theorem.
e) T (n) = 8T (n/2)+n3 = Θ(n3 log2 n) by the Master theorem.
f) T (n) = 49T (n/25)+ n3/2 logn = Θ(n3/2 logn). Apply the same reasoning of the proof of the

Master Theorem. The contribution of level i of the recursion is(
49

253/2

)i

n3/2 log
( n

253/2

)
=

(
49
125

)i

O(n3/2 logn)

Because the corresponding geometric series is dominated by the contribution of the first
level, we obtain T (n)=O(n3/2 logn). But, T (n) is clearly Ω(n3/2 logn). Hence, T (n)=Θ(n3/2 logn).

g) T (n) = T (n−1)+2 = Θ(n).
h) T (n) = T (n−1)+nc = ∑

n
i=0 ic +T (0) = Θ(nc+1).

i) T (n) = T (n−1)+ cn = ∑
n
i=0 ci +T (0) = cn+1−1

c−1 +T (0) = Θ(cn).
j) T (n) = 2T (n−1)+1 = ∑

n−1
i=0 2i +2nT (0) = Θ(2n).

k) T (n) = T (
√

n)+ 1 = ∑
k
i=0 1+T (b), where k ∈ Z such that n

1
2k is a small constant b, i.e. the

size of the base case. This implies k = Θ(log logn) and T (n) = Θ(log logn).

5. (12 pts.) (Squaring a Matrix)

a) (4 points). [
a b
c d

]2

=

[
a2 +bc b(a+d)
c(a+d) bc+d2

]
Hence the 5 multiplications a2,d2,bc,b(a+d) and c(a+d) suffice to compute the square.

b) (4 points). We do get 5 subproblems but they are not of the same type as the original
problem. Note that we started with a squaring problem for a matrix of size n×n and three
of the 5 subproblems now involve multiplying n/2× n/2 matrices. Hence the recurrence
T (n) = 5T (n/2)+O(n2) does not make sense.

c) (4 points). Given two n×n matrices X and Y , create the 2n×2n matrix A:

A =

[
0 X
Y 0

]
It now suffices to compute A2, as its upper left block will contain XY :

A =

[
XY 0
0 XY

]
Hence, the product XY can be calculated in time O(S(2n)). If S(n) =O(nc), this is also O(nc).
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6. (26 pts.) (Closest Pair)

a) (4 points). Suppose 5 or more points in L are found in a square of size d×d. Divide the
square into 4 smaller squares of size d

2 ×
d
2 . At least one pair of points must fall within

the same smaller square: these two points will then be at distance at most d√
2
< d, which

contradicts the assumption that every pair of points in L is at distance at least d.
b) (10 points). The proof is by induction on the number of points. The algorithm is trivially

correct for two points, so we may turn to the inductive step. Suppose we have n points and
let (ps, pt) be the closest pair. There are three cases.
If ps, pt ∈ L, then (ps, pt) = (pL,qL) by the inductive hypothesis and all the other pairs tested
by the algorithm are at a larger distance apart, so the algorithm will correctly output
(ps, pt). The same reasoning holds if ps, pt ∈ R.
If ps ∈ L and pt ∈ R, the algorithm will be correct as long as it tests the distance between
ps and pt . Because ps and pt are at distance smaller than d, they will belong to the strip
of points with x-coordinate in [x−d,x+d]. Suppose that ys ≤ yt . A symmetric construction
applies in the other case. Consider the rectangle S with vertices (x−d,ys),(x−d,ys+d),(x+
d,ys + d),(x + d,ys). Notice that both ps and pt must be contained in S. Moreover, the
intersection of S with L is a square of size d×d, which, by a), can contain at most 4 points,
including ps. Similarly, the intersection of S with R can also contain at most 4 points,
including pt . Because the algorithm checks the distance between ps and the 7 points
following ps in the y-sorted list of points in the middle strip, it will check the distance
between ps and all the points of S. In particular, it will check the distance between ps and
pt , as required for the correctness of the algorithm.

c) (8 points). When called on input of n points this algorithm first computes the median x
value in O(n) and then splits the list of points into those belonging to L and R, which also
takes time O(n). Then the algorithm can recurse on these two subproblems, each over n/2
points. Once these have been solved the algorithm sorts the points in the middle strip by
y coordinate, which takes time O(n logn) and then computes O(n) distances, each of which
can be calculated in constant time. Hence the running time is given by the recursion
T (n) = 2T (n

2)+O(n logn). This can be analyzed as in the proof of the Master theorem. The
kth level of the recursion tree will contribute tk = 2k n

2k (logn− k). Hence, the total running
time will be:

logn

∑
k=0

tk = n log2 n−n
logn

∑
k=0

k ≤ n log2 n− n
2

log2 n = O(n log2 n)

.
d) (4 points). We can save some time by sorting the points by y-coordinate only once and

making sure that the split routine is implemented as not to modify the order by y when
splitting by x. Sorting takes time O(n logn), while the time required by the remaining
of the algorithm is now described by the recurrence T (n) = 2T (n

2) + O(n), which yields
T (n) = O(n logn). Hence, the overall running time is O(n logn).
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