CS 170 Algorithms
Spring 2014 E. Mossel HW 4

1. (15 pts.) Reachability from single vertex

Consider any graph G. In the metagraph of G, if there are two (or more) source strongly con-
nected components, then there can never be a vertex which can reach both of the source SCCs.
So, if G is one-way connected, then there must be only one source SCC, and the special vertex
v must be in this source SCC.

Moreover, any vertex u in this source SCC can reach v, and so all vertices in G are also reach-
able from u. So, if G is one-way connected, then all vertices can be reached from any vertex in
the source SCC of G.

This gives the following algorithm - run a DF'S on G from any starting node, and find the vertex
v with the highest post number (which must be in a source SCC). Then run a DFS from v and
check that all vertices are reachable from v. There are 2 DFS’s, so this takes O(|V|+ |E|) time.

Clearly, if the algorithm returns true, then G is one-way connected (it actually finds the spe-
cial vertex v). If the algorithm returns false, we know that there is a vertex in a source SCC
of G which cannot reach all vertices, and by the preceding discussion this means that G is not
one-way connected.

2. (20 pts.) DFS edge types in BFS

(a) Suppose we have a forward edge (u,v) from vertex u with depth & in the BFS tree. Since
(u,v) is a forward edge, v is a non-child descendant of u and so has depth > k+2.

BF'S has the property that the shortest path from the starting vertex s to a vertex v with
depth k in the BF'S tree has k edges. So, the shortest path to v has at least k+ 2 edges, and
the shortest path to u has k edges. However, if we take the shortest path to « and add the
edge (u,v), we get a path to v with £+ 1 edges. Contradiction.

(b) In the corresponding algorithm for DFS, we use the pre and post numbers to classify
edges. The key insight is that if we remove the non-tree edges from the graph and run
DFS again, we will get exactly the same pre and post numbers. This is because in normal
DFS, any non-tree edge is ignored, and so it has no effect on the pre and post numbers.
So, another valid way of classifying edges for DFS is:

1. Run DFS on the graph and construct the DF'S tree.
2. Run DFS on the DFS tree to generate pre and post numbers.

CS 170, Spring 2014, HW 4

[y

3. Classify edges using these pre and post numbers.

Now if we look at steps 2 and 3, we can see that it does not depend at all on the fact that
we are using a DFS tree - it would work for any tree. In particular, it would also work for
the BFS tree, which gives the following algorithm:

1. Run BFS on the graph and construct the BFS tree.
2. Run DFS on the BF'S tree to generate pre and post numbers.
3. Classify edges using these pre and post numbers.

The correctness of this algorithm follows immediately from the correctness of the algo-
rithm for classifying edges in DF'S.

Construction of the BF'S tree takes O(|V|+ |E|) time. Running DFS on the BF'S tree takes
O(|V]) time (since a tree has O(|V|) edges). Classifying each edge takes O(|E|) time. So,
the algorithm takes O(|V|+ |E|) time in total.

3. (15 pts.) 0Odd Cycle

Consider the case of a strongly connected graph first. The case of a general graph can be
handled by breaking it into its strongly connected components, since a cycle can only be present
in a single SCC. We proceed by coloring alternate levels of the DF'S tree as red and blue. We
claim that the graph has an odd cycle if and only if there is an edge between two vertices of
the same color (which can be checked in linear time).

If there is an odd cycle, it cannot be two colored and hence there must be a monochromatic
edge. For the other direction, let u and v be two vertices having the same color and let (u,v) be
an edge. Also, let w be their lowest common ancestor in the tree. Since « and v have the same
color, the distances from w to u and v are either both odd or both even. This gives two paths p;
and p;, from w to v, one through u and one not passing through u, one of which is odd and the
other is even.

Since the graph is strongly connected, there must also be a path ¢ from v to w. Since the length
of this path is either odd or even, g along with one of p; and p, will give an odd length tour (a
cycle which might visit a vertex multiple times) passing through both v and w. Staring from
v, we progressively break the tour into cycles whenever it intersects itself. Since the length of
the tour is odd, one of these cycles must have odd length (as the sum of their lengths is the
length of the tour).

4. (15 pts.) Multiple Shortest Paths

We perform a BFS on the graph starting from u, and create a variable num paths(x) for the
number of paths from u to x, for all vertices x. If xi,x,,...x; are vertices at depth / in the
BFS tree and x is a vertex at depth /+ 1 such that (x,x),...,(x,x) € E then we want to set
num_paths(x) = num_paths(x;)+ ...+ num paths(x;). The easiest way to do this is to start with
numyaths(x) = 0 for all vertices x # u and num_paths(x) = 1. We then update num paths(y) =
num_paths(y) +num_paths(x), for each edge (x,y) that goes down one level in the tree. Since, we
only modify BF'S to do one extra operation per edge, this takes linear time. The pseudocode is
as follows

function count_paths (G,u,v)
for all xeV:
dist(x) = oo
num paths(x) = 0

dist(u) = 0
num paths(u) = 1
Q = [u]

while Q is not empty:
x = eject (Q)
for all edges (x,y)€E

if dist(y) = dist(x) + 1:

num_paths (y) = num_paths(y) + num_paths (x)
if dist (y) = oo:

inject (Q,y)

dist(y) = dist(x) + 1

num_paths (y) = num_paths (x)

5. (20 pts.) Shortest Cycle

Define matrix D so that D;; is the length of the shortest path from vertex i to vertex j in the
input graph. Row i of the matrix can be computed by a run of Dijkstra’s algorithm in time
O(|V|?). So we can calculate all of D in time O(|V|*). For any pair of vertices u,v we know that
there is a cycle of length D,, + D,, consisting of the two shortest paths between u and v and
that this cycle is the shortest among cycles containing u and v. This shows that it suffices to
compute the minimum D,, + D,, over all pairs of vertices u,v to find the length of the shortest
cycle. This last operation takes time O(|V|?), so the overall running time is O(|V |?).

6. (15 pts.) Graph Construction

We can construct a graph where the nodes are the states, and there is a directed edge from
state a to state b if by one crossing we get state b from a. We name the the states using four-bit
binary strings, where the four bits correspond to F, W, S, and C respectively, 0 means East,
and 1 means West. For example, the state 0101 is the state where F, S are at the east bank,
and W, C are on the west bank. There are 2* = 16 states in total, among them 10 states are
safe (i.e. nothing will be eaten).

{0000, 1010,0010, 1110, 1011,0100,0001, 1101,0101, 1111}
There are 10 edges in total

0000 — 1010,1010 — 0010,0010 — 1110,1110 — 0100
0100 —+1101,1101 — 0101,0101 — 1111,0010 — 1011
1011 — 0001,0001 — 1101

(a) By examining the graph, it is easy to identify two paths from 0000 to 1111 involving 7 river
crossings, and they are the shortest ones.

0000 — 1010 — 0010 — 1110 — 0100 — 1101 — 0101 — 1111

0000 —+ 1010 — 0010 — 1011 — 0001 — 1101 — 0101 — 1111

(b) From above, we know there are 2 such solutions.

