
CS 170 Algorithms
Spring 2014 Elchanan Mossel HW 7

1. (15 pts.) Cutting cloth

Subproblems: Define XY subproblems. For 1 ≤ i ≤ X and 1 ≤ j ≤ Y , let C(i, j) be the best return that can
be obtained from a cloth of shape i× j. Define also a function rect as follows:

rect(i, j) =
{

maxk ck for all products k with ak = i and bk = j
0 if no such product exists

Algorithm and Recursion: Then the recursion is:

C(i, j) = max{max
1≤k<i

{C(k, j)+C(i− k, j)}, max
1≤h< j

{C(i,h)+C(i, j−h)},rect(i, j)}

It remains to initialize the smallest subproblems correctly:

C(1, j) = max{0,rect(1, j)}
C(i,1) = max{0,rect(i,1)}

The final solution is then the value of C(X ,Y).

Correctness and Running Time: For proving correctness, notice that C(i, j) trivially has the intended mean-
ing for the base cases with i = 1 or j = 1. Inductively, C(i, j) is solved correctly, as a rectangle i× j can
only be cut in the (i−1)+(j−1) ways considered by the recursion or be occupied completely by a product,
which is accounted for by the rect(i, j) term. The running time is O(XY (X +Y + n)) as there are XY
subproblems and each takes O(X +Y +n) to evaluate.

2. (15 pts.) (Optimal binary search tree) Let S(i, j) be the cost of cheapest tree formed by words i to j,
for 1 ≤ i, j ≤ n. Also, initialize S(i, j) to 0 if i > j. Then S(i, j) will be the minimum cost of the tree over
all choices of word k, i ≤ k ≤ j, to place at the root. If word k is at the root, the cost of the left subtree
will be S(i,k−1) and the cost of right subtree will be S(k+1, j). Moreover, all words will need to pay one
comparison at the root node, so the total cost of the tree will be ∑

j
t=i pt +S(i,k−1)+S(k+1, j). Hence:

S(i, j) = min
i≤k≤ j

{
j

∑
t=i

pt +S(i,k−1)+S(k+1, j)}

Finally, the cost of the optimal tree will be S(1,n). To reconstruct the tree, it suffices to keep track of which
root k minimized the expression in the recursion for each subproblem and backtrack from S(1,n).

Running time: The running time for this algorithm is O(n3). There are O(n2) subproblems (one for each
possible i, j pair), and each subproblem takes O(n) to compute, since it requires taking a min over O(n)
values (the values of ∑

j
t=i pt can be memoized along with the values of S(i, j)).

CS 170, Spring 2014, HW 7 1

3. (20 pts.) Timesheets Part 2

Preprocessing: Sort all jobs in the order of decreasing Pi
Ri

so we have the permutation Π(1), ...,Π(N) of
1, ...,N.

Subproblem: Let K(t, j) be the maximum reward achievable by time t completing a subset of jobs from jobs
labeled Π(1), ...,Π(j).

Initialization: K(0,0) = 0, K(0, j) = 0 for all 1≤ j ≤ N, K(t,0) = 0 for all 1≤ t ≤ T

Recursion: K(t, j) = max{K(t−RΠ(j), j−1)+VΠ(j)− t ∗PΠ(j),K(t, j−1),K(t−1, j)}
Solution: The answer is given by K(T,N).

Correctness: We sort in this order for the same reason as last week’s problem without the time limit. Given
the subset of jobs we want to process, we still want to process them in the most optimal way. The rest of
the algorithm is a variation of the knapsack problem. The recursion chooses job Π(j) to either be in the
subset of jobs done or toss the job out and not complete it. The last term in the recursion is just there to
make sure that the maximum sum propagates to the end even if the jobs chosen to be completed do not fill
the maximum time T .

Running time: The running time of the algorithm is O(N log N) for sorting in the beginning and O(NT) for
the recursion. Therefore, the total running time of the algorithm is O(N(T + log N)).

4. (15 pts.) Sorting with errors

Let {e1,e2, . . . ,en} be our set of elements and let Score(S) be the optimal score for some S⊆{e1,e2, . . . ,en}.
We can express Score(S) in terms of smaller sub-problems as follows. If e j is the last element in the optimal
ordering of S. The elements in S−{e j} must appear in the same order in the optimal orderings of S−{e j}
and S since adding e j at the end of any ordering of S−{e j} will add the same value to the score which is
#{ei ∈ S−{e j} : ei > e j}.
So, Score({ei}) = 0 for i = 1, . . . ,n.

and the recurrence is

Score(S) = min
e j∈S

(Score(S−{e j})+#{ei ∈ S−{e j} : ei > e j})

The running time is O(2nn2) as we have O(2n) subproblems and each of them takes O(n2) time to compute.

5. (15 pts.) Exon chaining

For i ∈ {1, · · · ,n}, let W (i) be the the weight of the best subset of consistent partial matches in x[1, · · · , i].
To compute W (i), we consider the two following cases:

• the best subset of partial matches contains a match j with r j = i,

• the best subset of partial matches does not contain such j

In the first case, W (i) will be the sum of w j and the weight of the best match on the remaining of the
string, i.e. W (l j−1). In the second case, we will just have W (i) =W (i−1). This shows that the following
recursion is correct:

W (i) = max{W (i−1), max
j:r j=i
{W (l j−1)+w j}}

The algorithm will then proceed computing W (i) in ascending order of i and will output W (n) as best total
weight achievable. To reconstruct the actual sequence of partial matches, it suffices to keep track, for all

CS 170, Spring 2014, HW 7 2

W (i) of which j maximizes the expression in the recursion, when the second maximum is the larger. We
can then follow these pointers from W (n) backwards to identify the optimal alignment. The running time is
O(n+m), where m is the number of partial matches, as we have n subproblems and each partial match is
considered once in the maximizations.

6. (20 pts.) Time and space complexity of dynamic programming

Assume m = O(n).

a) Consider the usual matrix of subproblems E(i, j). If we update the values column by column, at every
point we only need the current column and the previous column to perform all calculations. Hence, if
we are just interested in the final value E(m,n) we may keep only two columns at every time, using
space O(n). Note that we are not able now to have a pointer structure to recover the optimal alignment,
as we would need pointers for all subproblems, which would take space mn.

b) Together with the subproblem solution L(i, j), for each j ≥ m/2, in each of the active two columns,
maintain a pointer to the index k at which the optimal path leading to (i, j) crossed the m/2 column.
Such pointer can be easily updated at every recursion by copying the pointer of the subproblem from
which the optimal solution is derived.

c) Consider the space requirement first. At any time during the running of this scheme, a single dynamic
programming data structure is active, taking up space O(n). All that is left to store is the values k for
all the subproblems on which we recurse. These are at most m as every values corresponds to an index
of x matched to one of y in the minimum edit distance alignment.. Hence, the total space required is
O(n). For the running time analyisis, notice that level i+1 of the recursion takes half the time of level
i. Hence, the total running time will be bounded above by O(mn)(1+ 1

2 +
1
4 + · · ·) = 2O(mn).

CS 170, Spring 2014, HW 7 3

