
Introduction to Java RMI

Lecture-1

Prof. Hari Mohan Pandey

Assistant Professor, CSE Department

Amity School of Engineering & Technology

hmpandey@amity.edu

Session Objective

• At the end of this lecture learns will be able to

– Define and explore RMI

– Develop RMI service application.

– Explains the features of RMI– Explains the features of RMI

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Remote Method Invocation (RMI)

• The Java Remote Method Invocation (RMI) application

programming interface (API) enables client and server

communications over the net.

• Remote method invocation allows applications• Remote method invocation allows applications

– to call object methods located remotely,

– sharing resources and

– processing load across systems.

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE DepartmentPrepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Remote Method Invocation (RMI) Cont.

• RMI allows any java object type to be used- even if the client

or server has never encountered it before.

• RMI allows both client and server to dynamically load new

object types as required.

• Remote Method Invocation (RMI) facilitates object function

calls between Java Virtual Machines (JVMs).

• JVM can be located on separate computers- yet one JVM can

invoke methods belonging to an object stored in another JVM.

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE DepartmentPrepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

RMI Applications Development

• RMI applications often comprise two separate programs, a

server and a client.

• A typical server program

– creates some remote objects,

– makes references to these objects accessible, and

– waits for clients to invoke methods on these objects.

• A typical client program

– obtains a remote reference to one or more remote objects on a server

and

– then invokes methods on them.

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE DepartmentPrepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

RMI Applications Development

• RMI provides the mechanism by which the server and the

client communicate and pass information back and forth.

• Such an application is sometimes referred to as a distributed

object application.object application.

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE DepartmentPrepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Distributed Object Application

• Distributed object applications need to do the following:

– Locate remote objects.

– Communicate with remote objects.

– Load class definitions for objects that are passed around.

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE DepartmentPrepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Locate Remote Objects

• Applications can use various mechanisms to obtain references

to remote objects.

• For example, an application can register its remote objects

with RMI's simple naming facility, the RMI registry.

• Alternatively, an application can pass and return remote• Alternatively, an application can pass and return remote

object references as part of other remote invocations.

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE DepartmentPrepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Locate Remote Objects Cont.

• Details of communication between remote objects are

handled by RMI.

• To the programmer, remote communication looks similar to

regular Java method invocations.

• Because RMI enables objects to be passed back and forth, it

provides mechanisms for loading an object's class definitions

as well as for transmitting an object's data.

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE DepartmentPrepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Writing RMI Service

• The various steps in the development of a RMI
service are as follows:

– Writing an interface

– Implementing the interface

– Implementing the client

– Running the application

– Generation of Stub and Skeletons

• Install files on client and server machines

• Starting RMI registry

• Running server and client

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE DepartmentPrepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Writing an Interface

• The first thing we need to do is to agree upon an interface.

• An interface is a description of the methods we will allow remote
clients to invoke.

• The method signature will be as follows:

double maxtwo(double a, double b);

• Save it under file name imax2.java in a directory name server.• Save it under file name imax2.java in a directory name server.

import java.rmi.*;

public interface imax2 extends Remote

{

double maxtwo(double a, double b)throws RuntimeException;

}

• Our interface name is imax2 and it must extend java.rmi.Remote,
which indicates that this is a remote service.

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE DepartmentPrepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Implementing the interface

• In the implementation part we need to write a class which will

be implementing the interface created in the first step.

• The class is responsible for providing the definitions of the

methods declared in interface.

• In writing this class the real code need to be concerned about• In writing this class the real code need to be concerned about

is the default constructor.

• Assume the class name is Max2Class. Its constructor must be

defined as:

public Max2Class()throws RemoteException

{}

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE DepartmentPrepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Implementing the interface Cont.

• We have to declare a default constructor, even when we

don’t have any initialization code for our service.

• This is because our default constructor can throw a

java.rmi.RemoteException, from its parent constructor

in UnicastRemoteObject.in UnicastRemoteObject.

• The implementation of the interface is given as:

public double maxtwo(double a, double b)throws RemoteException

{

return a>b ? a : b;

}

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE DepartmentPrepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Implementing the interface Cont.

• The complete source code of the file Max2Class.java is given below. Save
also in the directory server.

import java.rmi.*;

import java.rmi.server.*;

public class Max2Class extends UnicastRemoteObject implements imax2public class Max2Class extends UnicastRemoteObject implements imax2

{

public Max2Class()throws RemoteException {}

public double maxtwo(double a,double b)throws RemoteException

{

return a>b ? a:b;

}

}

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Implementing the interface Cont.

• Note the interface class must extend the class

UnicastRemoteObject class.

• RMI provides some convenience classes that remote object

implementations can extend which facilitate remote objectimplementations can extend which facilitate remote object

creation.

• The class UnicastRemoteObject is one of them. The class is

used for exporting a remote object and obtaining a stub that

communicates to the remote object.

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Creating Server
• Create a server class which will act as our RMI Server.

• Save the file under the name Max2Server.java in the server directory.

• The code for this class is given below.

import java.net.*;

import java.rmi.*;

public class Max2Server{

public static void main(String[] args){

try{try{

Max2Class ref = new Max2Class();

Naming.rebind("max2ser", ref);

}

catch (Exception e){

System.out.println("Exception:" + e);

}

}}

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Creating Server Cont.

• The crux of the code is the two statements re-written below:

Max2Class ref = new Max2Class();

Naming.rebind("max2ser", ref);

• Reference ref is of the class Max2Class created earlier.

• Naming is the class in java.rmi package. Its declaration is as follows:

public final class Naming extends Object

• The Naming class provides method for storing and obtaining references to

remote objects in a remote object registry.

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Creating Server Cont.

• Each method of the Naming class takes as one of its arguments a name
that is a java.lang.String in URL format (without the scheme component)
of the form:

//host: port/name

– Where host is the host (remote or local) where the registry is located,– Where host is the host (remote or local) where the registry is located,

– port is the port number on which the registry accepts calls, and

– name is a simple string un-interpreted by the registry.

• Both host and port are optional. If host is omitted, the host defaults to the
local host.

• If port is omitted, then the port default to 1099, the “well-known” port
that RMI’s registry, rmiregistry, uses.

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Implementing the Client

• The client receives an instance of the interface we defined earlier, and
not the actual implementation. Some behind-the scenes work is going
on, but this is completely transparent to the client.

String url = "rmi://127.0.0.1/max2ser";

imax2 mi =(imax2)Naming.lookup(url);

• To identify a service, we specify an RMI URL. The URL contains the
hostname on which the service is located, and the logical name of the
service. This returns an imax2 instance, which can then be used just
like a local object reference. We can call the methods just as if we’d
created an instance of the remote Max2Server ourselves.

//call remote method

System.out.println("Maximum: "+mi.maxtwo(20.4,23.4));

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Implementing the Client

import java.rmi.*;

public class Max2Client

{

public static void main(String args[])

{

try

{

String url = "rmi://127.0.0.1/max2ser";String url = "rmi://127.0.0.1/max2ser";

imax2 mi = (imax2)Naming.lookup(url);

System.out.println("Maximum is:"+mi.maxtwo(10.5,20.5));

}

catch (Exception e)

{

System.out.println("Exception: " + e);

}

}

}

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Running the application

A. Generating Stub and Skelton:

• To generate stubs and skeletons, you use a tool called the RMI

compiler, which is invoked from the command line, as shown

here, into the server directory:

rmic Max2Classrmic Max2Class

• This command generates two new files: Max2Class_Skel.class

(skeleton) and Max2Class_Stub.class (stub).

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Running the application

B. Install files on client and server machines

• Onto the server directory the following files must be present: imax2.class

(interface class file), Max2Server.class (the server class), Max2Class.class

(interface implemented class), Max2Class_Skel.class (Skelton),

Max2Class_Stub.class (stub).

• Onto the client directory the following files must be present: imax2.class

(interface class file), Max2Client (the client file) and Max2Class_Stub.class

(stub).

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Running the application

C. Starting RMI registry

• The JDK provides a program called rmiregistry, which executes on the

server machine. It maps names to object reference. Start the RMI Registry

from the command line as shown here:

start rmiregistry

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

Running the application

D. Running server and client

• Move onto the server directory and start the server in a separate window

as:

java Max2Server

• Now move onto the client directory and start the client in a separate

window as:window as:

java Max2Client

• Output you will get is:

Maximum is 20.5

Prepared By| Prof. Hari Mohan Pandey, Assistant Professor, CSE Department

