
Advanced Java Programming

Prepared By| Hari Mohan Pandey, Assistant Professor, CSE, Department, ASET, AUUP, Noida, U.P.

Experiment-8

1.1 Objective:
Application development using Enterprise Java Beans.

1.2 Learning Outcomes:

At the end learners will be able to:

• Create an EJB project.

• Understand the meaning of Stateless, Stateful and Singleton beans.

• Capable of using Jboss 7.1 application server and explain its importance.

• Explain the meaning of deploying the project in EJB environment.

• Understand and explain the process of server configuration and setting class path as

appropriate.

• Create interfaces, client and server as appropriate for EJB application.

1.3 Resources required

• JDK, Net Beans, Eclipse, JBoss 7.1 application server.

1.4 Configuring JBoss7.1 Server

Goto server explorer and right click

Choose the server (I have selected JBoss As 7.1 since I have it in my machine)

Click “next”

Advanced Java Programming

Prepared By| Hari Mohan Pandey, Assistant Professor, CSE, Department, ASET, AUUP, Noida, U.P.

Hit “Next”

Both lists will be empty in the beginning if you are configuring the server first time or if there is

no previous project available in the system.

Now, hit on “Finish”

Advanced Java Programming

Prepared By| Hari Mohan Pandey, Assistant Professor, CSE, Department, ASET, AUUP, Noida, U.P.

Now, right click of JBoss7.1 RuntimeServer and choose start option.

Once, you will choose the start option from the context menu then your application server will

start running and synchronized with the projects you are intended to develop.

If you will click of console then you can see the logs of JBoss 7.1 as enumerated below:

11:55:06,217 INFO [org.jboss.modules] JBoss Modules version 1.1.1.GA

11:55:06,704 INFO [org.jboss.msc] JBoss MSC version 1.0.2.GA

11:55:06,782 INFO [org.jboss.as] JBAS015899: JBoss AS 7.1.1.Final "Brontes" starting

11:55:08,357 INFO [org.jboss.as.server] JBAS015888: Creating http management service

using socket-binding (management-http)

11:55:08,400 INFO [org.xnio] XNIO Version 3.0.3.GA

11:55:08,411 INFO [org.xnio.nio] XNIO NIO Implementation Version 3.0.3.GA

11:55:08,421 INFO [org.jboss.remoting] JBoss Remoting version 3.2.3.GA

11:55:08,639 INFO [org.jboss.as.configadmin] JBAS016200: Activating ConfigAdmin

Subsystem

Advanced Java Programming

Prepared By| Hari Mohan Pandey, Assistant Professor, CSE, Department, ASET, AUUP, Noida, U.P.

11:55:08,645 INFO [org.jboss.as.logging] JBAS011502: Removing bootstrap log handlers

11:55:08,691 INFO [org.jboss.as.connector.subsystems.datasources] (ServerService

Thread Pool -- 27) JBAS010403: Deploying JDBC-compliant driver class org.h2.Driver

(version 1.3)

11:55:08,733 INFO [org.jboss.as.security] (ServerService Thread Pool -- 44)

JBAS013101: Activating Security Subsystem

11:55:08,813 INFO [org.jboss.as.security] (MSC service thread 1-4) JBAS013100:

Current PicketBox version=4.0.7.Final

11:55:08,908 INFO [org.jboss.as.osgi] (ServerService Thread Pool -- 39) JBAS011940:

Activating OSGi Subsystem

11:55:08,933 INFO [org.jboss.as.webservices] (ServerService Thread Pool -- 48)

JBAS015537: Activating WebServices Extension

11:55:09,094 INFO [org.jboss.as.clustering.infinispan] (ServerService Thread Pool --

31) JBAS010280: Activating Infinispan subsystem.

11:55:09,108 INFO [org.jboss.as.connector] (MSC service thread 1-4) JBAS010408:

Starting JCA Subsystem (JBoss IronJacamar 1.0.9.Final)

11:55:09,163 INFO [org.jboss.as.naming] (ServerService Thread Pool -- 38)

JBAS011800: Activating Naming Subsystem

11:55:09,238 INFO [org.jboss.as.naming] (MSC service thread 1-4) JBAS011802:

Starting Naming Service

11:55:09,322 INFO [org.jboss.as.mail.extension] (MSC service thread 1-4) JBAS015400:

Bound mail session [java:jboss/mail/Default]

11:55:09,599 INFO [org.jboss.ws.common.management.AbstractServerConfig] (MSC service

thread 1-1) JBoss Web Services - Stack CXF Server 4.0.2.GA

11:55:09,892 INFO [org.jboss.as.server.deployment.scanner] (MSC service thread 1-1)

JBAS015012: Started FileSystemDeploymentService for directory C:\Java\jboss-as-

7.1.1.Final\standalone\deployments

11:55:09,948 WARN [org.jboss.as.server.deployment.scanner] (DeploymentScanner-

threads - 1) JBAS015002: Deployment of 'GeniusHari3' requested, but the deployment is

not present

11:55:09,950 WARN [org.jboss.as.server.deployment.scanner] (DeploymentScanner-

threads - 1) JBAS015002: Deployment of 'EJBTesterLocal.java' requested, but the

deployment is not present

11:55:09,955 WARN [org.jboss.as.server.deployment.scanner] (DeploymentScanner-

threads - 1) JBAS015002: Deployment of 'EJBTester.java' requested, but the deployment

is not present

11:55:09,957 WARN [org.jboss.as.server.deployment.scanner] (DeploymentScanner-

threads - 1) JBAS015002: Deployment of 'DemoEJBEnterpriseProject.ear' requested, but

the deployment is not present

11:55:09,959 INFO [org.jboss.as.server.deployment.scanner] (DeploymentScanner-

threads - 1) JBAS015003: Found Demo1DynamicWebProject.war in deployment directory. To

trigger deployment create a file called Demo1DynamicWebProject.war.dodeploy

11:55:09,961 INFO [org.jboss.as.server.deployment.scanner] (DeploymentScanner-

threads - 1) JBAS015003: Found HelloWorldSessionBean.jar in deployment directory. To

trigger deployment create a file called HelloWorldSessionBean.jar.dodeploy

11:55:09,963 ERROR [org.jboss.as.server.deployment.scanner] (DeploymentScanner-

threads - 1) JBAS015010: The deployment scanner found a directory named META-INF that

was not inside a directory whose name ends with .ear, .jar, .rar, .sar or .war. This

is likely the result of unzipping an archive directly inside the C:\Java\jboss-as-

7.1.1.Final\standalone\deployments directory, which is a user error. The META-INF

directory will not be scanned for deployments, but it is possible that the scanner

mayfind other files from the unzipped archive and attempt to deploy them, leading to

errors.

11:55:09,967 ERROR [org.jboss.as.server.deployment.scanner] (DeploymentScanner-

threads - 1) JBAS015010: The deployment scanner found a directory named WEB-INF that

Advanced Java Programming

Prepared By| Hari Mohan Pandey, Assistant Professor, CSE, Department, ASET, AUUP, Noida, U.P.

was not inside a directory whose name ends with .ear, .jar, .rar, .sar or .war. This

is likely the result of unzipping an archive directly inside the C:\Java\jboss-as-

7.1.1.Final\standalone\deployments directory, which is a user error. The WEB-INF

directory will not be scanned for deployments, but it is possible that the scanner

mayfind other files from the unzipped archive and attempt to deploy them, leading to

errors.

11:55:10,030 INFO [org.jboss.as.remoting] (MSC service thread 1-4) JBAS017100:

Listening on localhost/127.0.0.1:4447

11:55:10,070 INFO [org.apache.coyote.http11.Http11Protocol] (MSC service thread 1-3)

Starting Coyote HTTP/1.1 on http-localhost-127.0.0.1-8080

11:55:10,237 INFO [org.jboss.as.connector.subsystems.datasources] (MSC service

thread 1-3) JBAS010400: Bound data source [java:jboss/datasources/ExampleDS]

11:55:10,349 INFO [org.jboss.as.remoting] (MSC service thread 1-4) JBAS017100:

Listening on /127.0.0.1:9999

11:55:10,691 INFO [org.jboss.as] (Controller Boot Thread) JBAS015951: Admin console

listening on http://127.0.0.1:9990

11:55:10,705 INFO [org.jboss.as] (Controller Boot Thread) JBAS015874: JBoss AS

7.1.1.Final "Brontes" started in 4972ms - Started 133 of 208 services (74 services

are passive or on-demand)

Project Descriptor

• We are going to create a simple EJB HelloWorld Stateless bean project and a remote Java

application client which will call/invoke the bean.

• This is “HelloWorld” example explain the how to develop, deploy and run EJB3 Session

Bean (Stateless and Statefull) in JBoss application server.

• For testing this “HelloWorld” example we write a remote Java Application client (main()

method)

• For simplicity, the session bean and the client to access the session bean are created in the

same project.

Creating New EJBProject

• Open Eclipse IDE and create a new EJB project which can be done in three ways

o Right click on Project Explorer � New � EJBProject

o File menu� New� EJB Project

o Click on the down arrow on New icon on toolbar � EJB project

Advanced Java Programming

Prepared By| Hari Mohan Pandey, Assistant Professor, CSE, Department, ASET, AUUP, Noida, U.P.

• Enter the project name as “HelloWorldSessionBean”and make sure the JBoss7.1 Runtime

has been selected with EJB 3.0 Module version.

Advanced Java Programming

Prepared By| Hari Mohan Pandey, Assistant Professor, CSE, Department, ASET, AUUP, Noida, U.P.

• Click Next���� Next ���� and Finsh

• You will see an EJB project in the Project Explorer view.

Creating Session Bean and Bean Interface

• Right click on EJBModule ����New ���� Session Bean (EJB 3.x)

• Enter Java package name as com.ADJP.GeniusHari

• Enter the class name HelloWorldBean

• Select the State type as Stateless

Advanced Java Programming

Prepared By| Hari Mohan Pandey, Assistant Professor, CSE, Department, ASET, AUUP, Noida, U.P.

• Check the Remote Business Interface and enter the name as

com.ADJP.GeniusHari.HelloWorldBeanRemote

• Click Finish

Coding Bean and the Interface

• Open Bean Interface and type the following code and save the file

• Interface can be either @Remote or @local. In this example we have used @Remote.

package com.ADJP.GeniusHari3;

import javax.ejb.Remote;

@Remote

public interface HelloWorldBeanRemote {

 public String SayHello();

}

Advanced Java Programming

Prepared By| Hari Mohan Pandey, Assistant Professor, CSE, Department, ASET, AUUP, Noida, U.P.

• Open Bean and type the following code and save file

• Bean type can either be @Stateless or @Stateful. In this example we have used @Stateless

package com.ADJP.GeniusHari3;

import com.ADJP.GeniusHari3.HelloWorldBeanRemote;

import javax.ejb.Stateless;

/**

 * Session Bean implementation class HelloWorldBean

 */

@Stateless

public class HelloWorldBean implements HelloWorldBeanRemote {

 /**

 * Default constructor.

 */

 public HelloWorldBean() {

 }

 public String SayHello()

 {

 return "Hello World";

 }

}

Now, the stateless session bean has been created. The next step is to deploy the bean on the

server.

Advanced Java Programming

Prepared By| Hari Mohan Pandey, Assistant Professor, CSE, Department, ASET, AUUP, Noida, U.P.

Deploying EJB project

• Now, we need to deploy the Stateless session bean “HelloWorldBean” on server (JBoss 7.1)

• Deploying the project can be done in two ways:

• Right click on the EJB project �Run As � Run on Server. Select the existing “JBoss 7.1

Runtime Server” and click Finish.

• Right click on JBoss 7.1 Runtime Server” available in Server view� Add and Remove…�

Select the EJB JAR file from the left pane and click Add� and then Finish.

Start/Restart Server

 Right click on JBoss 7.1 Runtime Server from servers view and click on Start if it has not yet

been started.

 If the project is deployed properly with global JNDI mapping then you will see the following

message in the console.

Creating Client

� The next step is to write a remote Java client application (with main()) for accessing and

invoking the EJBs deployed on the server

� Client uses for a proxy of your bean and invokes method on that proxy.

Creating JNDI InitialContext

Obtaining a Context using InitialContext

Advanced Java Programming

Prepared By| Hari Mohan Pandey, Assistant Professor, CSE, Department, ASET, AUUP, Noida, U.P.

� All naming service operations are performed on some implementation of the

javax.naming.Context interface. Therefore, the starting point of interacting with the naming

service is to obtain a Context by providing the properties specific to the server

implementation being used. In our case it is, JBoss Application Server.

� To create a javax.naming.InitialContext, we need to initialize it with properties from the

environment. JNDI verifies each property’s value by merging the values from the following

two sources,

o Using parameterized constructor of InitialContext which takes properties of

supplied environment

o jndi.properties resource files found on the classpath.

The following utility class is used to create InitialContext for JBoss AS and can be reused in all

applications. Otherwise the code written in this class should be repeated in all clients.

� Right click on EJBModule -> New -> Class

� Enter the package name as com.ADJP.ClientHari

� Enter the Class name as ClientUtility

� Click on Finish

Advanced Java Programming

Prepared By| Hari Mohan Pandey, Assistant Professor, CSE, Department, ASET, AUUP, Noida, U.P.

package com.ADJP.ClientHari;

import java.util.Properties;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

public class ClientUtility {

 private static Context initialContext;

 private static final String PKG_INTERFACES =

"org.jboss.ejb.client.naming";

 public static Context getInitialContext() throws NamingException {

 if (initialContext == null) {

 Properties properties = new Properties();

 properties.put(Context.URL_PKG_PREFIXES, PKG_INTERFACES);

 initialContext = new InitialContext(properties);

 }

 return initialContext;

 }

}

Advanced Java Programming

Prepared By| Hari Mohan Pandey, Assistant Professor, CSE, Department, ASET, AUUP, Noida, U.P.

Creating client class

� Right click on ejbModule -> New -> Class

� Enter the package name as com.ibytecode.client

� Enter the Class name as EJBApplicationClient

� Check the main() method option

� Click on Finish

package com.ADJP.client;

import javax.naming.Context;

import javax.naming.NamingException;

import com.ADJP.GeniusHari3.HelloWorldBeanRemote;

import com.ADJP.GeniusHari3.HelloWorldBean;

import com.ADJP.ClientHari.ClientUtility;

public class EJBApplicationClient {

 public static void main(String[] args) {

 HelloWorldBeanRemote bean = doLookup();

 System.out.println(bean.SayHello()); // 4. Call business logic

 }

Advanced Java Programming

Prepared By| Hari Mohan Pandey, Assistant Professor, CSE, Department, ASET, AUUP, Noida, U.P.

 private static HelloWorldBeanRemote doLookup() {

 Context context = null;

 HelloWorldBeanRemote bean = null;

 try {

 // 1. Obtaining Context

 context = ClientUtility.getInitialContext();

 // 2. Generate JNDI Lookup name

 String lookupName = getLookupName();

 // 3. Lookup and cast

 bean = (HelloWorldBeanRemote) context.lookup(lookupName);

 } catch (NamingException e) {

 e.printStackTrace();

 }

 return bean;

 }

 private static String getLookupName() {

/*

The app name is the EAR name of the deployed EJB without .ear suffix.

Since we haven't deployed the application as a .ear,

the app name for us will be an empty string

*/

 String appName = "";

 /* The module name is the JAR name of the deployed EJB

 without the .jar suffix.

 */

 String moduleName = "HelloWorldSessionBean";

/*AS7 allows each deployment to have an (optional) distinct name.

This can be an empty string if distinct name is not specified.

*/

 String distinctName = "";

 // The EJB bean implementation class name

 String beanName = HelloWorldBean.class.getSimpleName();

 // Fully qualified remote interface name

 final String interfaceName = HelloWorldBeanRemote.class.getName();

 // Create a look up string name

 String name = "ejb:" + appName + "/" + moduleName + "/" +

 distinctName + "/" + beanName + "!" + interfaceName;

 return name;

Advanced Java Programming

Prepared By| Hari Mohan Pandey, Assistant Professor, CSE, Department, ASET, AUUP, Noida, U.P.

 }

}

Setting up EJB client context properties

An EJB client context is a context which contains contextual information for carrying out

remote invocations on EJBs. This is a JBoss AS specific API. The EJB client context can be

associated with multiple EJB receivers. Each EJB receiver is capable of handling invocations on

different EJBs.

Create a file “jboss-ejb-client.properties” in the classpath of the application. We can place

it in ejbModule folder of our application. The jboss-ejb-client.properties contains the following

properties:

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=false

remote.connections=default

remote.connection.default.host=localhost

remote.connection.default.port = 4447

remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOUS=fa

lse

Advanced Java Programming

Prepared By| Hari Mohan Pandey, Assistant Professor, CSE, Department, ASET, AUUP, Noida, U.P.

Adding JAR files required for the client to run the client application

Select the client application (EJBApplicationClient) under Java Application from left pane and

open the Classpath tab from right side pane. If you don’t see your client application, run it once.

Select “User Entries” and click on “Add External JARs”

Advanced Java Programming

Prepared By| Hari Mohan Pandey, Assistant Professor, CSE, Department, ASET, AUUP, Noida, U.P.

Add the following JAR files.

Run the client

Final Output

