© 2009 Marty Hall

EJB3: Session Beans

Originals of Slides and Source Code for Examples:
http://courses.coreservlets.com/Course-Materials/msajsp.html

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.
Developed and taught by well-known author and developer. At public venues or onsite at your location.

© 2009 Marty Hall

core
SERVLETS and
JAVASERVER PAGES

— |

S
 SERVLETS and

. JAVASERVER PAGES

For live Java EE training, please see training courses at
http://courses.coreservlets.com/. Servlets, JSP, Struts,
JSF, Ajax, GWT, Java 6, Spring, Hibernate, JPA, EJB3,
Web Services, & customized combinations of topics.

Taught by the author of Core Servlets and JSP, More
Servlets and JSP, and this tutorial. Available at public
venues, or customized versions can be held on-site at your
organization. Contact hall@coreservlets.com for details.

Agenda

Stateless session beans

Deploying EJB projects to server

Remote clients for stateless session beans
Stateful session beans

Local access to EJBs

© 2009 Marty Hall

Overview

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.
Developed and taught by well-known author and developer. At public venues or onsite at your location.

Benefits of EJB

Encapsulating business logic

— Business logic separated from control and presentation

Remote access

— Multiple apps on different servers can access EJBs

Simplicity

— Relatively easy to use compared to other remote-object
systems

Broad vendor support

— JBoss, Oracle AS, WebLogic, WebSphere, Glassfish, etc.

Scalability

— Virtually all Java EE app servers support clustering, load
balancing, and failover

Disadvantages of EJB

Complexity
— Although EJB3 might be simpler than other remote-
object systems, remote-object frameworks are much more
complex than local-object approaches.
» Spring is easier and more powerful for local access
Requires Java EE server
— Can’t run on Tomcat, Jetty, Resin, JRun, Resin

— Java EE servers are usually much harder to configure,
dramatically slower to start/restart during development
and testing, and usually cost money

* Requires latest Java EE version
— Must upgrade to latest server releases

Bad reputation due to earlier releases
— EJB2 was so complex that EJB has bad rap to this day

Industry Usage (Keywords In
Worldwide Job Postings)

Job Trends from Indeed.com
~ |8p = struts — spring and java = aejbh =— hibernate

[o)
o L]
L

)
ra

Percentage of Matching Job Postings

Jul'8s Jan'06 Jul'06 Jan'07 Jul'07 Jan'08 Jul'08 Jan 09

Session Beans: Overview

o Stateless session beans

— On server, you make interface (marked with @Remote)
and POJO that implements it (marked with @ Stateless)

 Ordinary Java object with ordinary methods that use
ordinary Java objects as arguments and return types

* No state (instance vars) maintained between method calls
— Client uses InitialContext.lookup(""name") to get ref.
 Client makes normal method calls (data serialized on net.)
o Stateful session beans
— Mark POJO with @Stateful instead of @ Stateless
— Mark special method with @Remove

— Client does similar lookup and method calls, but needs to
call the special method when done.
 State (instance vars) maintained until that method called

Servers

e Servers that support Java EE 5
— JB0Ss 5
— Glassfish 2.1 (and Sun App Server built on it)
— BEA WebLogic 10
— Oracle AS 11
— IBM WebSphere 7
— Apache Geronimo 2
— SAP NetWeaver Java EE 5 Edition
— TmaxSoft JEUS 6

* JBoss and Glassfish
— Used to demonstrate examples in this tutorial
— Installation and setup details given in previous lecture

© 2009 Marty Hall

Stateless Session
Beans

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.
Developed and taught by well-known author and developer. At public venues or onsite at your location.

Stateless Session Beans: Idea

e POJOs

— Ordinary Java classes; no special interfaces or parent
classes. Often provide some sort of service such as
mapping customer ids to Customer objects.

 Local or remote access

— Can be accessed either on local app server (same machine
as app that uses the beans) or remote app server (different
machine from app that uses the beans)

Do not maintain client state

— Instance variables are protected from race conditions only
during a single method call. Should not store client-
specific state that needs to be accessed across multiple
method calls.

Stateless Session Beans:
Approach

 Make new EJB project

— File > New - EJB Project

* Can choose JBoss or Glassfish as target runtime. Either way,
you can deploy project to both servers.

 Define an interface

— Mark with @Remote
» For access from other servers or from projects on same server

— Mark with @Local
* To only allow access from projects on same server (default)

* Create aclass that implements interface

— Mark with @Stateless for server’s default JNDI mapping
— Mark with @Stateless(mappedName="SomeJndiName")
* Deploy to app server

— R-click server, Add/Remove Projects, start server

EJB Project

P ‘{

* Making project L A———
— File - New - EJB Project
— Pick a name §

— JBoss or Glassfish as target runtime

* You can later deploy to any compatible
server; you are not restricted to the one | =
you chose initially.

— Optional: addtoanEAR |. . < ——

o] ety

- If you make Dynamic Web project later that wants to use
@EJB, you can add it to the same EAR

* Deploying project
— R-click on JBoss or Glassfish (or any Java EE 5 server

that you have registered with Eclipse), Add and Remove
Projects, choose Project, Add, Finish

— R-click on JBoss or Glassfish (or other), Start

Interface

package coreservlets.bean;

i mpo rt j avax - ej b - * ; Means that you can use InitialContext to access and access

bean from either same server or remote machine. Code in same
EAR can also use @EJB to access it. If you use @Local (or
nothing at all), only code on same server in same EAR can
access it.

@Remote
public interface NumberService {
public double getNumber(double range);

}

Remote client will pass in normal arguments and get normal
return values. Behind the scenes, however, data will be
serialized and sent across network.

Class that Implements Interface

If you just use @Stateless, remote clients need to use server-

pac kage coreserv I etS - bean ; specific JNDI name. If you are using JBoss only (or Glassfish

only), this is fine. But if you want to deploy the same app to
multiple servers and not change the client code at all, it
simplifies things to use a common JNDI name via
@Stateless(mappedName="JNDI-Name")

import javax.ejb.*;

@Stateless(mappedName=""NumberCreator")
public class NumberServiceBean
implements NumberService {
public double getNumber(double range) {
return(Math.random() * range);

}
¥

© 2009 Marty Hall

Clients for Stateless
Session Beans

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.
Developed and taught by well-known author and developer. At public venues or onsite at your location.

ldea

Clients find the bean via JNDI

— Client Java code doesn’t even know the machine on
which the bean resides

Clients use the bean like a normal POJO
— But arguments and return values are sent across network
— So, custom classes should be Serializable
Core code
— InitialContext context = new InitialContext();
— InterfaceName bean =
(InterfaceName)context.lookup("JNDI-Name");
jndi.properties
— Text file in classpath; gives remote URL and other info

Remote Client Project

« Made new Dynamic Web Project
— Chose lucky-numbers-client as name
— Chose JBoss 5 as target runtime
« Can be deployed to Glassfish or other Java EE 5 server
e jndi.properties
— Created text file called “jndi.properties” in src folder
— Must give remote URL. Often other info. Server specific!
— Details shown in upcoming slide
* Deploying
— Does not need to run on same machine as EJB Project.

— Standalone (desktop) clients don’t need to be deployed to
any app server; they can just have a “main” method.

— Web apps should be deploved to a Java EE 5 app server

Remote Standalone (Desktop)
Client

package coreservlets.client;
i mpO rt j avax.nam i ng * - mappedName given in @Stateless annotation
import coreservlets.bean.*;

public class LuckyNumberClient {
public static void main(String[] args) throws Exception {
InitialContext context = new InitialCogntext();
NumberService service =
(NumberService)context. lookup(**"NumberCreator');
System.out.printf(*'Small lucky number: %6.2F.%n"",
service.getNumber(10));
System.out.printf(*'Medium lucky number: %6.2Ff.%n",
service.getNumber(100));
System.out.printf(*'Big lucky number: %6.2F.%n",
service.getNumber(1000));

Used like normal object. Behind the scenes, however,
arguments and return value are sent across network.

Note on Name in context.lookup

e |[SSue

— You pass a name to context.lookup. If you just use
@Remote with no mappedName, default name is
different for JBoss than for Glassfish (or other servers).

— In JBoss, the default INDI name would be
"NumberServiceBean/remote"

— In Glassfish, the default INDI name would be
"coreservlets.bean.NumberService"
Solution: use mappedName

— | use @Stateless(mappedName="NumberCreator")
instead of just @ Stateless

— S0, | can use the same name (NumberCreator) regardless
of which server the EJB project is deployed to

Remote Client: jndi.properties

 For JBoss
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
java.naming.provider.url=localhost:1099

g FO r G I aS S fi S h Change this hostname if app server is
on different host than client.
org.omg.CORBA.ORBInitialHost=localhost

* Notes
— Put in *“src” folder in Eclipse to be sure it is in classpath

— The Eclipse project you can download has both versions.
Just copy/rename jboss-jndi.properties or glassfish-
jndi.properties.

Remote Standalone Client:
Results

e lucky-numbers (EJB Project)
— Deployed to JBoss or Glassfish. Output is same.

* lucky-numbers-client (Dynamic Web Proj.)
— Not yet deployed to any server.
— jndi.properties matches the server of EJB project

e Qutput

Small lucky number: 9.73.
Medium lucky number: 29.41.
Big lucky number: 114 _.37.

Remote Web Client
(Servlet)

public class LuckyNumberServlet extends HttpServilet {

@Override
public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, 10Exception {

try {
InitialContext context = new InitialContext();

NumberService service =
(NumberService)context. lookup(**"NumberCreator');

response.setContentType(""text/html'");

PrintWriter out = response.getWriter();

String docType =
"<IDOCTYPE HTML PUBLIC \'"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\"">\n"";

Remote Web Client
(Servlet Continued)

out.printIn(docType +
"<HTML>\n"" +
"<HEAD><TITLE>Your Lucky Numbers</TITLE></HEAD>\n"+
"'<BODY BGCOLOR=\"#FDF5E6\"'>\n"" +
"<H1>Your Lucky Numbers</H1>\n" +
"(""+getServletContext().getServerinfo(Q+ ")\n"+
""™);
for(int i=0; i<5; i++) {
out.printf(" %5.3Ff\n", service.getNumber((i+1)*10));
}
out_printIn(*'\n</BODY></HTML>"") ;

} catch(NamingException ne) {
System.out.printIn(’Error: " + ne);

}

+
}

Remote Web Client
(web.xml)

<servlet>
<servlet-name>
Servlet with Individual Numbers from EJB
</servlet-name>
<servlet-class>
coreservlets.client.LuckyNumberServlet
</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>

Servlet with Individual Numbers from EJB
</servlet-name>

<url-pattern>/lucky-nums</url-pattern>
</servlet-mapping>

Remote Web Client
(Results JBoss 5)

@ Your Lucky Mumbers - Mozilla Firefox
File Edit View History Bookmarks Tools Help

= 7y ':.\ & ;http:_-"_f'l0ca|ho5t:8080_-"|ucky7!"!u_mbersfclient-j'luck)rfn_ums birde _'."'
Your Lucky Numbers

(TBoss Web/2.1.3.GA)

e 0.191
* 5093
* 5508
* 28096
* 10.530

Done

£
A

Remote Web Client
(Results Glassfish 2.1)

@ Your Lucky Mumbers - Mozilla Firefox

=lE e

File Edit View History Bookmarks Tools Help
- LA l il :http:_a'_f'loca|ho5t:8080_a'|uclcy-!"!u_mbers-clienta_'luclc_\,r-n_ums L _' Google):’
Your Lucky Numbers
(Sun GlassFish Enterprise Server v2.1)

* 0.526

® 12767

= 10917

® 35788

* 9378

Done

© 2009 Marty Hall

Using @EJB to Access
Local Beans

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.

Developed and taught by well-known author and developer. At public venues or onsite at your location.

ldea

« Use @EJB before instance variable
— Bean will be automatically instantiated and assigned. Eg:
* @EJB private SomeService myService;
e Useful for
— One EJB that uses another EJB as part of its logic
* Always good idea since EJBs are usually together
— Multiple Web apps that use the same business logic
« Simpler, but Web app can’t move to remote server
e Restrictions
— Before instance variables, not local variables.
— Both classes must be part of same EAR on same server

* In Eclipse, all classes in a single EJB project satisfy this

* If you use an EJB project (EJBs) and Dynamic Web
projects (classes that use the EJBS), you must choose
“Add project to an EAR” and specify same one

Example: EJB Interface

package coreservlets.bean;

import java.util_List;
import javax.ejb.*;

@Remote
public interface NumberListService {
public List<Double> getNumbers(int size,
double range);

Example: EJB Class that
Implements Interface

Remote client will do
context.lookup(“NumberListCreator") and
/ cast it to NumberListService. That remote
_ client will neyerdirectly use the instance of
@Stateless(mappedName=""NumberListCreator'") Numberserice.

public class NumberListServiceBean
implements NumberListService {

@EJB private NumberService,numService;
Declare the interface type (NumberService),

not the concrete type (NumberServiceBean).
public List<Double> getNumbers(int size, double range) {
List<Double> nums = new ArrayList<Double>();
for(int 1=0; i<size; i++) {
nums.add(numService.getNumber(range));
}
return(nums) ;
}
}

Example: Remote Client
(Servlet)

public class LuckyNumberServlet2 extends HttpServlet {
@Override
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, I10Exception {

try {
InitialContext context = new InitialContext();
NumberListService service =
(NumberListService)context. lookup(*"NumberListCreator');
List<Double>\ nums = service.getNumbers(10, 50);

Looks up remote EJB the normal way. 'I_'hal remote £JB The mappedName from the @Stateless declaration. If you
uses @EJB to access a local bean. If this Web app were . N

did not use a mappedName, then this client code would
always part of the same EAR on the same app server, then - .

- need to use a server-specific name. For JBoss it would be
this Web app could also use @EJB to access beans. But " S W s
; L . . NumberServiceListBean/remote™ and for Glassfish it

having the Web app use InitialContext is more flexible . o

would be "coreservlets.bean.NumberServiceList".

because it allows for the possibility of the Web app later
moving to another server without changing any code.

Example: Remote Client
(Servlet Continued)

response.setContentType('"text/html'™);
PrintWriter out = response.getWriter();
String docType =
"<IDOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\"">\n"";
out.printIn(docType +
"<HTML>\n"" +
"<HEAD><TITLE>Your Lucky Numbers</TITLE></HEAD>\n"" +
""<BODY BGCOLOR=\"#FDF5E6\"'>\n"" +
"<H1>Your Lucky Numbers</H1>\n" +
(" + getServletContext().getServerinfo() + ")\n" +
""™);
for(double num: nums) {
out.printf(" %5.3F\n", num);
}
out.printIn(*'\n</BODY></HTML>"");
} catch(NamingException ne) {
System.out.printIn(Error: " + ne);
}
}

Remote Client: jndi.properties

 For JBoss
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
java.naming.provider.url=localhost:1099

g FO r G I aS S fi S h Change this hostname if app server is
.. on different host than client.
org.omg.CORBA.ORBInitialHost=localhost

* Notes
— Put in *“src” folder in Eclipse to be sure it is in classpath

— The Eclipse project you can download has both versions.
Just copy/rename jboss-jndi.properties or glassfish-
jndi.properties.

Example: Remote Client
(web.xml)

<servlet>
<servlet-name>
Servlet with Number List from EJB
</servlet-name>
<servlet-class>
coreservlets.client.LuckyNumberServilet2
</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>
Servlet with Number List from EJB
</servlet-name>
<url-pattern>/lucky-nums2</url-pattern>
</servlet-mapping>

Example: Results (JBoss 5)

@ Your Lucky Numbers - Mozilla Firefox El@
File Edit View History Bookmarks Tools Help

o c it ':.\ . ;http:f'_f'localh05t:8080_f'lucky-!'!u_mbers-clientf_'lucky-numﬂ o _'::':’--*;=
Your Lucky Numbers

(TBoss Web/2.1.3.GA)

e 12182
* 16468
® 36.189
* 12,408
* 39.875
e 15150
® 3652

e 11.877
e 42023
e 48201

Done Py

Example: Results
(Glassfish 2.1)

@ Your Lucky Numbers - Mozilla Firefox El@
File Edit View History Bookmarks Tools Help
- c L] [; , | http://localhost:B080/lucky-numbers-client/lucky-nums2 o ~| Google

Your Lucky Numbers

(Sun GlassFish Enterprise Server v2.1)

® 5.886
e 24901
e (0309
e 33.781
43.454
19.133
26.141
15.710
21.707
5.850

Done

© 2009 Marty Hall

Stateful Session Beans

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.
Developed and taught by well-known author and developer. At public venues or onsite at your location.

Stateful Session Beans: Idea

e POJOs

— Ordinary Java classes; no special interfaces or parent
classes. Often provide some sort of service that stores
information (temporarily) as well as sending it.

 Local or remote access

— Can be accessed either on local app server (same machine
as app that uses the beans) or remote app server (different
machine from app that uses the beans)

 Maintain client state

— You can configure the bean with client-specific
information, then access that info (without fear of race
conditions) until you call special method marked with
@Remove.

Stateful Session Beans:
Approach

 Make new EJB project
— File > New - EJB Project

 Define an interface

— Mark with @Remote
* For access from other servers or from projects on same server

— Mark with @Local
* To only allow access from projects on same server (default)

* Create a class that implements interface
— Mark with @Stateful for server’s default JNDI mapping
— Mark with @ Stateful(mappedName="SomeJndiName")
— Mark a method with @Remove

* When called, server terminates session and gc's instance
* Deploy to app server
— R-click server, Add/Remove Projects, start server

Example: EJB Interface

package coreservlets.bean;

import java.util_List;
import javax.ejb.*;

@Remote

public interface FancyList {

public void initializeNumbers(int size,
double range);

public List<Double> getNumbers();

public double getSum();

public double getSmallest();

public double getLargest();

public void removelList();

Example: EJB Class that
Implements Interface

@Stateful(mappedNamez"cool—number—list")___h_ﬁm?gmwgmﬁTSmTqmm
- - - - nhumber-| and cast it to FancyList.
public class FancyListBean implements FancyList f

@EJB private NumberListService service;

private List<Double> nums = new ArrayList<Double>();

public void initializeNumbers(int size, double range) {

nums = service.getNumbers(size, range);
} Client will call this method first to set

up the state of the bean. Then the client
will repeatedly access the getBlah
- - methods to access information related
public List<Double> getNumbers() { to the state. When done, the client wil
- call removeList (next slide).
return(nums); (nextslide)

}

public double getSum() {
double sum = O;
for(double num: nums) {
sum = sum + num;
}

return(sum);

}

Example: EJB Class that
Implements Interface (Cont.)

public double getSmallest() {
return(Collections.min(nums));
}

public double getLargest() {
return(Collections.max(nums));

When client calls this method, session

is broken and bean instance is eligible

@Remove for garbage collection.
public void removeList() {

nums = new ArrayList<Double>();
}

}

Example: Remote Client
(Servlet)

public class FancyListServlet extends HttpServlet {
@Override
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, I10Exception {
int size = 10;
double range = 50.0;
String address;
try {
size = Integer.parselnt(request.getParameter(''size'));
range = Double.parseDouble(request.getParameter("'range’™));
} catch(Exception e) {}
try {
InitialContext context = new InitialContext();
FancyList fancyList =
(FancyList)context. lookup(*'cool-number-list");

fancyList.initializeNumbers(size, range); «— sesupstatethatuillbe
used in the JSP page.

Example: Remote Client
(Servlet Continued)

request.setAttribute("'fancyList”™, fancyList);

address = "/WEB-INF/results/show-fancy-list.jsp";

RequestDispatcher dispatcher =
request.getRequestDispatcher(address); 15P Page (VC spproec)

dispatcher.forward(request, response);

fancyList.removelLiSt() ;«——relsremoteappsenverwe

} catch(NamingException ne) { FedmenaEs

address = "/WEB-INF/results/error-page.jsp’;

RequestDispatcher dispatcher =
request.getRequestDispatcher(address);

dispatcher.forward(request, response);

Example: Remote Client (JSP)

<h2>General Info</h2>

Smallest: ${fancyList._smallest}
Largest: ${fancyList.largest}
Sum: ${fancyList.sum}
Server: ${pageContext.servletContext.serverinfo}

<%@ taglib prefix="c"
uri="http://java.sun.com/jsp/jstl/core” %>
<h2>Specific Numbers</h2>

<c:forEach var="number™ items="${fancyList.numbers}">
${number}</I1i>
</c:forEach>

/body></html>

Example: Remote Client
(jndi.properties)

 For JBoss
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
java.naming.provider.url=localhost:1099

g FO r G I aS S fi S h Change this hostname if app server is
.. on different host than client.
org.omg.CORBA.ORBInitialHost=localhost

* Notes
— Put in *“src” folder in Eclipse to be sure it is in classpath

— The Eclipse project you can download has both versions.
Just copy/rename jboss-jndi.properties or glassfish-
jndi.properties.

Example: Remote Client
(web.xml)

<servlet>
<servlet-name>
MVC Servlet with Stateful EJB
</servlet-name>
<servlet-class>
coreservlets.client. FancyListServlet
</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>
MVC Servlet with Stateful EJB
</servlet-name>
<url-pattern>/fancy-list</url-pattern>
</servlet-mapping>

Example: Remote Client
(Input Form)

<fieldset>
<legend>MVC Servlet plus JSTL, Stateful EJB</legend>
<form action="fancy-list'">
<label>Number of entries:
<input type="text" name="size"/></label>

<label>Range of values for each entry:
<input type="text" name="range'/></label>

<input type="'submit'/>
</form>
</fieldset>

Example: Remote Client
Results (JBoss 5)

& EJB Web Clients - Moxzilla Firefox [= ===
File Edit ¥iew History Bookmarks Tools Help
1' c bng " el http://localhostB080/ lucky-numbers-client/ .7 - ' Google Pl

MVC Servlet plus JSTL, Stateful EJB

Number of entries: 10

ance ol vainesfod each cntey: | 110 @ Stateful EJB: Fancy List - Mozilla Firefox \El@
Submit Query File Edit View History Bookmarks Tools Help
= C [< https//localhost:8080/lucky-numbers-client/fancy-list?size=10&range=2000 77 = [G]+ | Google 2
Done

ateful EJB: Fancy List

General Info

* Smallest: 33.240766844570445
o Largest 1222.9457159249846
+ Sum: 6695 585096803511

» Server: JBoss Web/2.1.3.GA

Specific Numbers

1212.705213515128
. 338.78433380674846
271.5579145870539
1158 9277046661307
1131.7528366788708
33.240766844570445
. 814.0827672340766

1222 9457159249846
. 41.22567101566599

. 470.362172530282

S0 S e

o
&
5
m
|

Example: Remote Client
Results (Glassfish 2.1)

& EJB Web Clients - Morilla Firefox (=== w
FEile Edit View History Bookmarks Tools Help @
e Stateful EJB: Fancy List - Mozilla Firef
GEs- ¢ 2 (% | ntpuriocanostaogo i
E—— : Eile Edit View History Bookmarks Tools Help
-a # (<. | httpif/localhost8080/lucky-numbers-client/fancy-list?size=158trange=500 17 -

'MVC Servlet plus JSTL, Stateful EJB '—

Number of entries: 15 L ‘Lo
Range of values for each entry: 500 B

| Submit Query

fore e Smallest: 3.611670074942619

o Largest 480.00894527637917

o Sum: 2355.6984999945553

s Server: Sun GlassFish Enterprise Server v2.1

ful EJB: Fancy List

General Info

Specific Numbers

. 283.83141245077996
. 12.829017092303829
. 21.397063282514505
. 3.9506496315667716
. 237.68969278578794
. 12.110966930800881
96.57562856537704
- 3.611670074942619
. 417.6307373122967
10. 186.23872902487122
11. 480.00894527637917
12. 181.18674324372103
13. 242.78584801091725
14. 147.9066025668644
15. 27.944793745432072

D 0ol Oh Lh ds LD RO e

© 2009 Marty Hall

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.
Developed and taught by well-known author and developer. At public venues or onsite at your location.

Books and References

EJB 3in Action

— Debu Panda, Reza Rahman, and Derek Lane (Manning)
Enterprise JavaBeans 3.0 (5th Edition)

— Bill Burke and Richard Monson-Haefel (O’Reilly)
Java EE 5 Tutorial (EJB section)

* http://java.sun.com/javaee/5/docs/tutorial/doc/bnblr.html

JBoss EJB3 Tutorial

* http://docs.jboss.com/ejb3/app-server/tutorial/

Glassfish EJB FAQ
* https://glassfish.dev.java.net/javaee5/ejb/EJB_FAQ.html

Cay Horstmann’s EJB Tutorial
* http://www.horstmann.com/elvis/elvis-meets-glassfish.html

Summary

Stateless session beans
— Interface: mark with @Remote
— Class: mark with @ Stateless(mappedName="blah")

Stateful session beans
— Mark class with @Stateful instead of @Stateless
— Mark a method with @Remove

Session bean clients
InitialContext context = new InitialContext();
InterfaceType var = (InterfaceType)context.lookup("blah");
var.someMethod(args);
— For stateful beans, call specially marked method when done
— Need jndi.properties specific to server type

Local access to beans
@EJB private InterfaceType var;

© 2009 Marty Hall

Questions?

Customized Java EE Training: http://courses.coreservlets.com/
Servlets, JSP, Struts, JSF/MyFaces/Facelets, Ajax, GWT, Spring, Hibernate/JPA, Java 5 & 6.
Developed and taught by well-known author and developer. At public venues or onsite at your location.

