ENGR 105: Feedback Control Design
Winter 2014

Lecture 6 - Block Diagrams and Control in MATLAB/Simulink
Friday, January 17, 2014
Today’s Objectives

1. learn to manipulate block diagrams
2. introduce the MATLAB Control System Toolbox and Simulink

Reading: FPE Section 3.2, Appendix C, and the MATLAB website

1 Block diagrams

The transfer function can be used to tell us a lot about the system, including;:

The impulse response and response to general inputs

Stability (through pole locations)

Steady-state value (if poles are stable)

The frequency response (in the next lecture, we will look at sinusoidal inputs)

The goal of feedback control is to shape the response of the system by closing a feedback loop,
which changes the open-loop transfer function into the closed-loop transfer function. To do this,
we need to be comfortable working with systems in a form that looks like:

There are some simple rules of block diagram algebra that make it easy to manipulate systems into
a form we want.

1.1 Basic Connections

Cascade

Some text/examples in this document (©Mathworks. Some materials also obtained from other universities, including
UC Berkeley, USC, CMU, and UMich.

Sum

Feedback

1.2 Example

This could be a DC motor
with position feedback.

The response to a change in reference input is stable instead of continuing to integrate as in an
open-loop system. (Compare to example in Lecture 5.)

1.3 Unity feedback

It is often helpful to rearrange the system to have a unity feedback loop (no blocks in the feedback
path). This can be accomplished with some manipulation of the diagram.

We can move the blocks into the feed forward or feedback paths to simplify analysis.

2 Control System Toolbox

The Control System Toolbox is a collection of algorithms, written mostly as m-files, that imple-
ments common control system design, analysis, and modeling techniques. Convenient graphical
user interfaces (GUIs) simplify typical control engineering tasks.

The command help control gives a list of the different functions. The most commonly used
functions are presented below. I encourage you to look through the help files for other functions
and options that you might find useful in future.

2.1 Transfer Functions

Control systems can be modeled as transfer functions, in zero-pole-gain form, or state-space form
(take ENGR 205 to learn the latter).

Transfer function models are created using the function tf (numerator,denominator), where
numerator and denominator are two vectors containing the coefficients of the polynomials in the
numerator and denominator of the transfer function.
[1 2 0];
[2 2 1];
tf (num,den)
Transfer function:
s72 + 2 s

2s8"2+2s+1

>> num
>> den
>> sys

Zero-Pole-Gain forms of transfer functions, ie, G(s) = % can be specified directly

as zpk(z,p,K) where z and p are the vectors of zero and pole values in the complex plane
(z= [z1 z2 ...]J andp = [pl p2 ...]), and K is the gain. The equivalent to the above system
is:
>> K
>> z = [0 -2];
>>p [-0.5+0.5%i -0.5-0.5%i];
>> zpk(z,p,K)
Zero/pole/gain:

0.5 s (s+2)

("2 + s + 0.5)

0.5;

The above models can be used in conjunction with the operators +, - and * to generate new models.
The command sysl * sys2 produces a series interconnection from input through sys2 and sys1
(in that order) to the output. sysl + sys2 represent parallel interconnections.

Control system models can also be converted from one form to the other. The functions presented
above (tf(), zpk()) are overloaded to perform arbitrary system conversions. For example, if sys1

is a state-space model, we can generate an equivalent transfer function model sys2 by issuing the
command
>> sys2 = tf(sysl);

The function feedback(sysl,sys2) will help you compute a closed-loop transfer function for
system consisting of the negative feedback interconnection of model objects sys1 (in the forward
path) and sys2 (in the feedback path). Be careful — if you want sys2 to be in the forward path,
you need to use feedback(sysil*sys2,1).

2.2 Time Domain Analysis

Time domain analysis in the form of time response of a system to a specified input can be obtained
using the following commands:

e step(sys) plots the step response of a system sys. Also, check out stepinfo for information
about common performance metrics.

e impulse(sys) plots the impulse response of sys.

e 1sim(sys,input_vector,time_vector,initial_state_vector) plots the response of sys
to an arbitrary input. The elements of input_vector define the values of the input at times
corresponding to the elements of time_vector. The initial state vector can be specified for
state-space models only (so, not used in the course).

e pidtool(sys,type) launches the PID Tuner GUI and designs a controller of type type (which
can take on values such as ’p’, ’pi’, and ’pid’) for plant sys.

e damp and/or roots (a standard MATLAB function) can also be useful in determining the
poles of a system.

e conv convolves two polynomials. It is particularly useful for determining the expanded coef-
ficients for factored polynomials. For example, try conv([1 1], [1 -31).
2.3 Classical and Frequency Domain Analysis

Classical and frequency domain analysis tools are listed below. We will not cover these today; this
is for your reference to use in the near future.

e rlocus(sys) plots the root locus of the system sys with variations in gain.
e bode(sys) plots the magnitude and phase angle Bode plots.

e [Gm,Pm,Wg,Wp] = margin(sys) calculates the gain margin Gm, the phase margin Pm, and the
frequencies corresponding to their occurrence. Issuing the command margin(sys) alone plots
the Bode diagram and marks the margins on it.

e nyquist(sys) plots the Nyquist plot of the system. Note that the loop at infinity is not
represented on the plot.

e sisotool(plant,compensator) opens an interactive mode of the root locus and bode plots,
which can be used to modify the compensator and gain to achieve the desired system char-
acteristics. The function can be called without passing an initial compensator, in which case
the poles and zeros of the compensator can be placed using the graphical interface. Final
designs can be exported back to the MATLAB workspace for further analysis.

For more information about the Control System Toolbox, you can refer to:
http://www.mathworks.com/products/control/
http://www.mathworks.com/help/control/examples/

3 Simulink

Simulink is a graphical tool that allows us to simulate feedback control systems. To start Simulink,
type at the command prompt:
>> simulink

A Simulink Library Browser will open. To open a window where you can create your system model,
select File > New > Model in the Simulink Library Browser window.

3.1 Adding and connecting components

To place a component, drag it from the component browser to the model space. To make a con-
nection, click and drag from an arrow on a block to an arrow on another block. To do this more
quickly, hold down CTRL and click on the arrows on each block that you wish to connect. To
connect multiple lines to a single block, hold down CTRL and click on the line already attached to
the block and then make the second connection.

For most of the systems we will encounter, we only need to be concerned with a small fraction of
Simulink’s component library. In particular, the components you should be familiar with are:

“Sources” library

Step: generates a unit step signal
Ramp: generates a ramp signal
Sine Wave: generates a sinusoid

“Sinks” library
Scope: used for viewing system output
To workspace: used to transfer a signal to MATLAB

“Continuous” library
Integrator: integrates a signal
Transfer Fcn: used to add a system block in transfer function form

“Math Operations” library
Gain: a constant gain

Sum: used to add two or more signals
Trigonometric Function: used to place non-linear trigonometric elements

For each of these blocks, you can specify the appropriate parameters by double-clicking on the
block. You can set the simulation configuration parameters (like start and stop times) by selecting
Simulation > Configuration Parameters. You run the simulation by selecting Simulation > Start.
(Depending on your OS and version of Matlab, you may have different options, such as a triangle-
shaped “play” icon in the toolbar.)

3.2 Example

Say you have a plant G(s) = -5T2-. You controller is of the form D(s) = K. Find the value of K

52—3s"
that stabilizes this system using a simulation-based approach (i.e., test different values of K and

see what happens). Note that we do not want a marginally stable system. Use a unit step reference
input in your simulation.

Solution A: Control System Toolbox (command-line) solution:

Solution B: Simulink solution:

Solution C: Find the answer analytically!

Answer: The system is stable if K >

For more information Simulink, you can refer to:
http://wuw.mathworks.com/products/simulink/
http://www.mathworks.com/help/simulink/examples/index.html

