Axioms

I. Propositional axioms

* All tautologies²

II. Quantifier axioms³

- (1) Universal specification (US): $\forall x P(x) \rightarrow P(t)$, where t is any term or expression of the same sort as the variable x and no free variable of t becomes bound when P(t) is formed.⁴
 - (2) De Morgan's law for quantifiers: $\sim \forall x \ P(x) \leftrightarrow \exists x \sim P(x)$
 - *(3) De Morgan's law for quantifiers: $\sim \exists x \ P(x) \leftrightarrow \forall x \sim P(x)$
- *(4) Existential Generalization (EG): $P(t) \rightarrow \exists x \ P(x)$, with the same restrictions on t as in universal specification.

III. Equality axioms

d,

ed se

ut

IJу

es

to

s a

n P iout

you

'/Q] free

ions

P(c), of.

- (1) Reflexivity: x = x
- *(2) Symmetry: $x = y \rightarrow y = x$
- *(3) Transitivity: $(x = y \land y = z) \rightarrow x = z$
- (4) Substitution of equals: $x = y \to [P(x) \leftrightarrow P(y)]$, where P(y) results from replacing some or all of the occurrences of x in P(x) with y and neither x nor y is quantified in P(x).

IV. Set axioms

In these axioms, the variables A, B, C, and D denote sets but w, x, y, and z can be any sort of objects, not necessarily real numbers. This group of axioms is included here primarily for completeness; most of them are not discussed in the text.

- (1) Extensionality: $A = B \leftrightarrow \forall x \ (x \in A \leftrightarrow x \in B)$
- (2) Pairing: $\forall x, y \exists A \ \forall z \ [z \in A \leftrightarrow (z = x \lor z = y)]$. (Less formally, this says: for every x and y, the set $\{x, y\}$ exists.)
 - (3) There is a set R of all real numbers. 6
 - *(4) For every x and y, the ordered pair (x, y) exists.

*(5)
$$(w, x) = (y, z)$$
 iff $w = y$ and $x = z$.

- (6) Power set axiom: $\forall A \exists B \ \forall C \ (C \in B \leftrightarrow C \subseteq A)$. (Less formally, this says: for every set A, P(A) exists.)
- (7) Union axiom: $\forall \mathscr{A} \exists B \ \forall x \ [x \in B \leftrightarrow \exists C \ (C \in \mathscr{A} \land x \in C)]$. (Less formally, this says: for every set of sets \mathscr{A} , the union of all the sets in \mathscr{A} (U\$\mathcal{A}) exists.)
- *(8) Separation axiom: For every proposition P(x) and every set A, the set $\{x \in A \mid P(x)\}$ exists.
 - (9) Replacement axiom: For every proposition P(x, y) and every set A,

$$[\forall x \in A \exists ! y \ P(x, y)] \to \exists B \ \forall y \ [y \in B \leftrightarrow \exists x \in A \ P(x, y)]$$

(Less formally, this says: if P(x, y) defines a function whose domain is the set A, then its range is also a set.)

- (10) Foundation axiom: $\forall A [A \neq \emptyset \rightarrow \exists B \in A (B \cap A = \emptyset)]$
- (11) Axiom of choice (AC): For every collection $\mathscr A$ of nonempty sets, there is a function f such that, for every B in $\mathscr A, f(B) \in B$.

V. Real number axioms

In these axioms, x, y, and z denote real numbers. Axioms 1–12 of this group are called the **field axioms**, while axioms 1–17 are called the **ordered field axioms**.

(1) Additive closure:
$$\forall x, y \exists z (x + y = z)$$

(2) Multiplicative closure:
$$\forall x, y \exists z (x \cdot y = z)$$

(3) Additive associativity:
$$x + (y + z) = (x + y) + z$$

(4) Multiplicative associativity:
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

(5) Additive commutativity:
$$x + y = y + x$$

(6) Multiplicative commutativity:
$$x \cdot y = y \cdot x$$

(7) Distributivity:
$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$
 and $(y + z) \cdot x = (y \cdot x) + (z \cdot x)^{7}$

(8) Additive identity: There is a number, denoted 0, such that for all x, x + 0 = x.

- (9) Multiplicative identity: There is a number, denoted 1, such that for all x, $x \cdot 1 = 1 \cdot x = x$.
- (10) Additive inverses: For every x there is a number, denoted -x, such that x + (-x) = 0.
- (11) Multiplicative inverses: For every nonzero x there is a number, denoted x^{-1} , such that $x \cdot x^{-1} = x^{-1} \cdot x = 1$.
 - $(12) 0 \neq 1$

en

s a

are

- (13) Irreflexivity of $<: \sim (x < x)$
- (14) Transitivity of <: If x < y and y < z, then x < z
- (15) Trichotomy: Either x < y, y < x, or x = y
- (16) If x < y, then x + z < y + z
- (17) If x < y and 0 < z, then $x \cdot z < y \cdot z$ and $z \cdot x < z \cdot y^{-7}$
- (18) Completeness: If a nonempty set of real numbers has an upper bound, then it has a *least* upper bound.

VI. Natural number axioms

In these axioms, m and n denote natural numbers and A denotes a set.

- (1) $1 \in \mathbb{N}^9$
- (2) If $m \in \mathbb{N}$, then $m + 1 \in \mathbb{N}$.
- (3) Mathematical induction (set form): $[1 \in A \land \forall n \ (n \in A \rightarrow n+1 \in A)] \rightarrow \mathbb{N} \subseteq A$
- *(3') Mathematical induction (statement form):

$$[P(1) \land \forall n \ (P(n) \rightarrow P(n+1)] \rightarrow \forall n \ P(n)^{10}$$

Footnotes

- (1) Various other derived rules of inference, which may be used as if they were part of the axiom system, are given in Section 4.2.
 - (2) For a list of many useful tautologies, see Appendix 3.