MATH 203: HOMEWORK 11 DUE BY 5PM ON FRIDAY, APRIL 18

1)

- (a) Prove that the additive group of Gaussian integers given by $m+n\sqrt{-1}$ for $m,n\in\mathbb{Z}$ is isomorphic to the multiplicative group of rational fractions of the form 2^n3^m for $m,n\in\mathbb{Z}$.
- (b) Show that both groups from part (a) are isomorphic to the group of all translations of a rectangular lattice in the plane.
- 2) Exhibit a group of transformations isomorphic with each of the following groups:
 - (a) The group of all real numbers under addition.
 - (b) The group of all nonzero real numbers under multiplication.
 - (c) The group of integers mod 8 under addition.
- 3) Show that a group G cannot be the union of two proper subgroups.
- 4) (a) If a cyclic group G is generated by a of order m, prove that the powers of a^k generate all of G iff g.c.d (k, m) = 1 (g.c.d denotes the greatest common division of k and m).
- (b) How many different generators does a cyclic group of order 6 have?

Definition: Let G be a group, and let $a \in G$ be an element of G. If there exists some $n \in \mathbb{N}^*$ such that $a^n = e$, then a is said to be of **finite order**. Furthermore, the lowest positive integer $p \in \mathbb{N}^*$ such that $a^p = e$ is called the **order** of the element a.

5) Let G be an abelian group. Show that the elements of finite order in G form a subgroup. This subgroup is called the **torsion subgroup** of G.