MATH 203: HOMEWORK 12 DUE BY 5PM ON FRIDAY, APRIL 25

- 1) (a) Let G be the group of transformations $x \to ax + b$ of \mathbb{R} into \mathbb{R} , where $a \neq 0$, $a, b \in \mathbb{R}$, and let S be the group of all such transformations satisfying a = 1. Describe the right and left cosets of S in G.
- (b) Let T be the subgroup of G consisting of all transformations with b = 0. Describe the right and left cosets of T in G.
- 2) Prove that the number of right cosets of any subgroup S of a finite group G equals the number of its left cosets. (Hint: Consider the map $x \to x^{-1}$.)
- 3) Let S be a subgroup of a group G, and let SaS denote the set of all products sas' for $s,s' \in S$. Prove that for any $a,b \in G$, either $SaS \cap SbS = \emptyset$ or SaS = SbS.
- 4) For a subgroup S of a group G, let $x \equiv y \mod S \mod xy^{-1} \in S$.
 - (a) Prove the relation \equiv is reflexive, symmetric, and transitive.
 - (b) Show that $x \equiv y \mod S$ iff x and y lie in the same right coset of S in G.
 - (c) Show that $x \equiv y \mod S$ implies $xa \equiv ya \mod S$ for all $a \in G$.
- 5) Prove that a group of order p^m for p a prime number must contain a subgroup of order p.