
THE SPIN LANGUAGE &
PropBot ProgrammingPropBot Programming

Chapter 3

Objectives
Learn about the Propeller chip and the Spin
programming language

Understand how to program the PropBot
– Using the sensors and servos

Understand how to use the robot-to-PC
communications software (RobotTracker v4.0) to

di d b h C h b d hcoordinate code between the PC, the robot and the
webcam-based tracking system.

3-2
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

What’s in Here ?
The Propeller Chip & Spin Language
– Propeller Chip, Propeller Tool IDE and Spin
– Memory and Variables

Math Functions– Math Functions
– Control Structures
– Debugging

Spin Programming ExamplesSpin Programming Examples
– Reading Sensors
– Servo Control

“R b t T k ” S ft“Robot Tracker” Software
– GUI and Settings
– Tracing a Robot’s Movements
– Wireless DebuggingWireless Debugging
– Trace Files
– Mapping

3-3
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

The Propeller
Mic P cessMicroProcessor

The Propeller
The microprocessor that we will use is
called the Propeller:

A0 – A31
32 general
purpose

A30,A31
Used for serial I/O (i.e., programming)

A28 A29I/O pins. A28,A29
Connects to external EEPROM

VDD
Runs on 3.3v,

t 5

#PROCESSORS = 8

not 5v.
RAM = 32k, ROM = 32k

CLOCK SPEED = 12Mhz

I/O PINS = 32

3-5
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

8 Processors
The Propeller has 8 processors (called cogs):
– “True” multitasking (parallel processing)

h d (d bi f hi)– Shared memory (round robin fashion)
– Shared I/O pins

2k bytes of individual
memory per processor

Cogs all run at
the same speed
and execute
their instructions
synchronously.

3-6
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Cog memory
Each Cog has a small amount of “local” memory:
– 496 x 32bit words

f h h d (i h d– faster than shared memory (i.e., access to shared memory can
take anywhere from 7 to 22 clock cycles, whereas access to
local memory takes at most 4 clock cycles)

$000
– use it for local variables & stack space

$000

ADDRESS NAME TYPE DESCRIPTION
$1F0 PAR Read-Only Boot Parameter
$1F1 CNT Read-Only System Counter
$1F2 INA Read Only Input States for P31 P0

General
Purpose

Can use this
for timing and
d l$1F2 INA Read-Only Input States for P31 - P0

$1F3 INB Read-Only Input States for P63- P322
$1F4 OUTA Read/Write Output States for P31 - P0
$1F5 OUTB Read/Write Output States for P63 – P322
$1F6 DIRA Read/Write Direction States for P31 - P0
$1F7 DIRB Read/Write Direction States for P63 - P322
$1F8 CTRA Read/Write Counter A Control

Purpose
Registers
(496 x 32)

delays.

$1EF
$1F0

$1FF

$ 8 C / C C
$1F9 CTRB Read/Write Counter B Control
$1FA FRQA Read/Write Counter A Frequency
$1FB FRQB Read/Write Counter B Frequency
$1FC PHSA Read/Write Counter A Phase
$1FD PHSB Read/Write Counter B Phase
$1FE VCFG Read/Write Video Configuration
$1FF VSCL R d/W it Vid S l

Special Purpose
Registers
(16 x 32)

3-7
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

$1FF$1FF VSCL Read/Write Video Scale

Main (shared) Memory
Available memory is 32k bytes:
– All cog programs must fit

i h k bin the 32k byte memory

– its actually a lot of space

$0000
$000F

RAM
(32k)

Reserved (16 bytes)

$0010

Your Code(we used less than 2k
altogether with the BS2
chip previously)

$7FFF
$8000

(32k)Your Code
(32,752 bytes)

chip previously)

– Tips:
d ’t ll t h

$8000
$BFFF
$C000
$CFFF
$D000
$DFFF

ROM
(32k)

Character Set (16,384 bytes)

Log Table (4,096 bytes)

Anti-log Table (4,096 bytes)
- don’t allocate huge arrays
- use registers when possible
- re-use variables

$DFFF
$E000
$F001
$F002
$FFFF

(32k)
Sine Table (4,098 bytes)

Boot Loader & Interpreter

3-8
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Programming Using SPINProgramming Using SPIN

The Propeller Tool IDE
Our robots will be programmed using the Propeller
Tool IDE Editor

Object View Pane Recent Folders

F ld PFolders Pane

Code is organized
into colored
blocks for easy
recognition.

List of files in the
above selected
folder

File filters

3-10
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Downloading Your Code
After you write your code …

Select this or press F8 to see how
much space your program takes up.

Select this or press F11 to download

Select this or press F9 to
compile without downloading.

If this window appears, then you forgot to …

your code onto the robot.

pp

– setup the COM port,
– turn on & plug in the robot, orp g ,
– disconnect from the

Serial Terminal

3-11
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Downloaded Code
Downloaded code is stored onto EEPROM

When the robot is turned on or reset, the EEPROM,
program is
loaded onto loaded onto
RAM and
then runthen run.

3-12
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Spin Code
Propeller code can be written in:
– SPIN (i.e., an object-oriented interpreted language).

bl l (h)– Assembly language (yech!)

Spin code is organized into objects
– Like JAVA, each .spin file defines an object

Executable programs must have a public mainp g p
method.

Spin has no debugger or console screen:Spin has no debugger or console screen:
– We will use a pre-defined object that allows serial I/O

through either a USB connection to the PC or through the
i l bl t th d i

3-13
Winter 2012

wireless bluetooth device

Chapter 3 – The Spin Language & PropBot Programming

SPIN Programs
Spin code is automatically arranged into “colored”
sections:

Constants

Object Variables

Primitive Variables

Public Methods

Private Methods

3-14
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Constants
Constants may be:

– Integers (booleans and characters are integers too)g g
e.g., outPin = 21

– Floats
e.g., scale = 1.5

– Expressions (must be constant algebraic)Expressions (must be constant algebraic)
e.g., number = 32.05 * 18.1

_ character can be
used to separate
groups of 3 digits for
integers to make
them more readable.

They can be declared on the same line:

e.g., delay = 500, aChar = "A", baud = 9_600

3-15
Winter 2012

g _

Chapter 3 – The Spin Language & PropBot Programming

Number Representation
Numbers are actually represented as
– decimal (215), hex ($D7) or binary (%11010111).

Negative numbers stored using two’s compliment:

5 = 00000101 (can be represented as 5 $05 or %00000101 in SPIN)5 = 000001012 (can be represented as 5, $05 or %00000101 in SPIN)

-5 = 111110102 in one’s compliment notation (just flip bits)

-5 = 111110112 in two’s compliment notation (flip bits & add 1)

The propeller performs ALL calculations using 32 bits
(i.e., longs)

Even floating point math calculations use longs

3-16
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Float Constants
Float constants can be declared directly if shown as
real number values (i.e., with a decimal point).

CON

Width = 83.651 ' Height set to float 83.651

Can convert integers to floats and vice-versa:

CON

Height = FLOAT(27) ' Height set to float 27.0

Size1 = ROUND(Width) ' Size1 set to integer 84

Size2 = TRUNC(Width) ' Size2 set to integer 83

3-17
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Predefined Constants
There are some predefined constants:

TRUE (value is -1 … or $FFFFFFFF)
FALSE (value is 0 … or $00000000)
POSX (value is 2,147,483,647 … or $7FFFFFFF)
NEGX (value is -2,147,483,648 … or $80000000)
PI (value is 3.141593 … or $40490FDB)

There are some chip-specific constants as well:
_clkmode = xtal1 + pll16x

We will not look into
_xinfreq = 5_000_000

... many more ...

understanding these as
they will be fixed for our
purposes.

3-18
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Variables
SPIN has 3 main types of integer variables:
VAR

byte counter ' 8 bits Variables are:byte counter ' 8-bits

word numReadings ' 16-bits (2 bytes)

long timeLapse ' 32-bits (4 bytes)

Variables are:

• Global to the object
• Not accessible

outside the object
(unless a pointer to

byte str[24]

word positions[100]

long averages[10]

Can make arrays of
these types.

its memory is used)

In almost all situations,
all variable names must

byte a, b, c

word x1, y1, x2, y2
Can use , to declare
more than one on a line.

be unique globally,
even local variable
names!!

3-19
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Byte Arrays
Consider arrays of bytes:
VAR

b t b ff O [100]
Use the @ sign to refer to the

byte bufferOne[100]

byte bufferTwo[100]

Can fill in an array of bytes with some value:

array’s address (i.e., the first
byte in the array)

y y
bytefill(@bufferOne, 0, 100)

bytefill(@bufferTwo+50, 1, 50)

Fills in all 100 values with 0

Fills in 2nd half of buffer with 1

Can also copy bytes from one location to another:
bytemove(@bufferOne, @bufferTwo, 100)

Similar commands exist for word and long types:
wordfill, longfill, wordmove, longmove

3-20
Winter 2012

wordfill, longfill, wordmove, longmove

Chapter 3 – The Spin Language & PropBot Programming

Strings
Strings are just “arrays of bytes”, terminated by 0.

Can use STRING, STRSIZE, STRCOMP:G, ,
byte size

long myStringPtr

l St i Pt

STRING declares a
string constant and

long yourStringPtr

myStringPtr := STRING("Hello World")

g
returns its address.

yourStringPtr := STRING("Hello There")

size := STRSIZE(myStringPtr)

if STRCOMP(myStringPtr, yourStringPtr)

STRSIZE returns the number of
characters in the string number up
to but not including the
terminating zero byte at the end.

'...strings are equal ...

else

'...strings are not equal ...

terminating zero byte at the end.

STRCOMP compares two strings for equality.
Does not check < or > … just ==.

3-21
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Does not check or … just .

More Strings
Strings can also be declared as byte arrays:

byte size

byte myString[10]
You can access each
character individually.byte myString[10]

myString[0] := "H"

myString[1] := "e"
Don’t forget to add a
zero byte at the end!

y

myString[2] := "l"

myString[3] := "l"

myString[4] := "o"

y

Use @ to get the
address of the y g[]

myString[5] := 0

size := STRSIZE(@myString)

if STRCOMP(@myString, STRING("Hello"))

string.

if STRCOMP(@myString, STRING(Hello))

'...strings are equal

else

' strings are not equal

3-22
Winter 2012

'...strings are not equal

Chapter 3 – The Spin Language & PropBot Programming

Other Useful Tools
Lookupz is a useful tool for using fixed lists of data:

repeat i from 0 to 6
temp gets assigned the number in this list at

repeat i from 0 to 6

temp := lookupz(i: 25, 300, 2510, 163, 17, 8000, 3)

' … now do something with temp …

position i (starting index = 0)

Lookdownz returns the index of a list item’s data:
i gets assigned the index (starting from 0) of the first number in
this list with value val In this case it returns 3

val := 163

i := lookdownz(val: 25, 300, 2510, 163, 17, 8000, 3)

this list with value val. In this case it returns 3.

3-23
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Objects
Spin allows object variables as well:

Type of object. Must be defined in files with
these names and a .spin extension within the

di t

VAR
long x,y,z

OBJ

same directory.

Object variables are
defined in differentRBC: "RBC"

SERIAL: "SerialIO"
NUM: "Numbers"
BEACON: "BeaconSensor"
LS1: "LightSensor"
LS2 "Li htS "

Two separate objects, both
of type LightSensor.

defined in different
section than primitives

Objects are automatically created upon startup

LS2: "LightSensor"

Object variable names.

Objects are automatically created upon startup.
– Although, sometimes they have an init or start method that

needs to be called.

3-24
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Defining Methods
Methods may be either PUBlic or PRIvate:
Here is the general format for all methods:

PUB MethodName (p1, p2, …) :rVal | locVar1, locVar2,…
… code …
code

PUB or
PRI but
PRI is not
accessible
outside … code …

locVar1 := …
locVar2 := …
… code …

the object. The variable representing the return value
for the method (must always be a long). If
not needed, leave off the colon:
PUB MethodName(p1,p2) | v1, v2
An automatic variable called Result is

rVal := …
… code …

PUB NextMethod ….

available for use as well, so you don’t need
to make your own: e.g., Result := 10
rVal can be set at any time in the method
and is returned upon method completion or
when return is called.

There are NO
braces { } for
the method.
Code is
identified as

Parameters are ALL long, just specify the names. If
NO parameters, leave off the brackets entirely:
PUB MethodName : rVal | v1…

List ALL local variable names here. They are
ALL long. If not, leave off the | completely:
PUB MethodName(p1,p2):rVal

being inside
the method if
it is indented.

3-25
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

| (p p)

Method Calls
To call a method defined in the spin file, just use its
name:

PUB main
Calls the SetUp method
below with parameter 12.

SetUp(12)
...

PRI SetUp(range)
...

To call an object’s method, you merely use the
object’s name followed by a dot and the method object s name, followed by a dot and the method
name:

PUB main
RBC.Init

If no parameters,
don’t use brackets.RBC.Init

d1 := LS1.GetReading
d2 := LS2.GetReading
CONV.ToStr(z, CONV#DEC)
RBC.DebugStr(@myString)

3-26
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Simple Math
Here are some simple math operators:
x := x + 5 'if you don't understand this, go home…

/ 6 ' i l di idx := y / 6 'simple divide

x := x // 10 'modulus (i.e., remainder after divide)

x := x * 4 'multiply and return low 32 bits of result

x := x ** y 'multiply and return high 32 bits of result

x := y #> 100 'highest of y or 100

x : y <# 100 'lowest of y or 100x := y <# 100 'lowest of y or 100

As in JAVA, you can also use
+=, -=, *=, /=, //=, **=

++, -- (i.e., increment/decrement)

3-27
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

More Math
Here are some more …
x := ^^ y 'square root

x := || y 'absolute value

x := ?x 'pseudo-random long value

x := check1 AND check2 'logical ANDx := check1 AND check2 logical AND

x := check1 OR check2 'logical OR

x := NOT check1 'logical NOT

x == y 'logical EQUALS

x <> y 'logical NOT EQUALS

Can you believe that they
reversed the order ? …
a ridiculous decision !!

<, >, =<, => 'logical comparisons

@string 'address / pointer

3-28
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Bit Math
Here are some bit-related operators:
z := ~x 'sign extend when x is byte and z is long

11111011 (5)

z := ~~y 'sign extend when y is word and z is long

11111011 assume (x = -5)
00000000_00000000_00000000_11111011 (z := x → 251)
11111111_11111111_11111111_11111011 (z := ~x → -5)

x := y << 4 'shift left 4 bits

x := y >> 3 'shift right 3 bits

x := y ~> 2 'shift right 2 bits (keeps the sign)

x := !%00101100 'bitwise NOT

x := %00101100 & %00001111 'bitwise ANDx := %00101100 & %00001111 bitwise AND

x := %00101100 | %00001111 'bitwise OR

x := %00101100 ^ %00001111 'bitwise XOR

3-29
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Floating Point Math
SPIN operators DO NOT WORK on FLOATS!!!!
– either convert everything to integers, or

l h i d l i i bj hi h i– use FloatMath.spin and FloatString.spin objects which are in
the standard library:

Floats are actually

VAR
long x,y,z

OBJ
F: "FloatMath"

stored as longs.

Too many digits to store as “single” float.
This will be truncated to 7 significant digits.

F: FloatMath

PUB main:
x := 3.14159265
y := F.FMUL(2.0,x)
z := F.FDIV(y, FLOAT(2))

Warning!! You MUST NOT use 2
here. It MUST be a float (i.e., 2.0)
or the results will be wrong!!

This works too…converts integer to float.

3-30
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

More Floating Point Math
Here are all the functions/methods in FloatMath:

FAdd(single1, single2) 'add

FSub(single1, single2) 'subtract

FMul(single1, single2) 'multiply

FDiv(single1, single2) 'divide

FSqr(aSingle) 'square root

FNeg(aSingle) 'negateFNeg(aSingle) 'negate

FAbs(aSingle) 'absolute value

FTrunc(aSingle) 'truncate to integer(g) g

FRound(aSingle) 'round to integer

FFloat(anInteger) 'convert to float

3-31
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Converting Floats To Strings
The FloatString.spin library object converts floating
point numbers into Strings:
Fl tT St i (Si l) ‘ t t t iFloatToString(aSingle) ‘converts to a string

SetPrecision(anInteger) ‘sets precision from 1 to 7

significant digitssignificant digits

VAR
long x

OBJOBJ
FS: "FloatString"

PUB main:
x := 3.14159265
FS.FloatToString(x) ‘result is 3.141593g
FS.SetPrecision(3)
FS.FloatToString(x) ‘result is 3.14
FS.SetPrecision(1)
FS.FloatToString(x) ‘result is 3

3-32
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Trigonometry
Propeller contains 2049-word Sine table:
– sine values from 0° to 90° are “looked up”

i l f ll h d b– sine values for all other quadrants can be
calculated from simple transformations on this table.

– can calculate COS/TAN from SIN– can calculate COS/TAN from SIN

Instead of “re-inventing the wheel”, we can use the
library provided in Float32Full spin and library provided in Float32Full.spin and
Float32A.spin which:
– implements the usual float functionsp
– all the useful trig functions (i.e., sin, cos, tan, asin, acos, atan,

etc..)

3-33
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

The Extended Float32Full Object
Use Float32Full object instead of FloatMath:

VAR
long x Warning!! You MUST ALWAYS

supply a FLOAT value If you use

Replaces
FloatMath

OBJ
F: "Float32Full"

PUB main:
F.Start

supply a FLOAT value. If you use
an INTEGER value, the solution
will be wrong!!!

..

Need to
start the

x := F.SIN(F.RADIANS(0.0)) '0
x := F.SIN(F.RADIANS(45.0)) '0.7071031
x := F.SIN(F.RADIANS(90.0)) '1
x := F.SIN(F.RADIANS(180.0)) '0
x := F.SIN(F.RADIANS(270.0)) '-1

F SIN(F RADIANS(45 0)) ' 0 7071031

start the
cog
before
using it.

x := F.SIN(F.RADIANS(-45.0)) '-0.7071031
x := F.SIN(F.RADIANS(-90.0)) '-1
x := F.SIN(F.RADIANS(-180.0)) '0
x := F.SIN(F.RADIANS(-270.0)) '1

When using a Float32Full object, it will
take up 2 additional COGs for itself !!

3-34
Winter 2012

p 2 G f f

Chapter 3 – The Spin Language & PropBot Programming

Float32Full’s Functions
Here are “most” of the functions in Float32Full:

FAdd, FSub, FMul, FDiv 'same as in FloatMath

FSqr, FNeg, Abs 'same as in FloatMath

FTrunc, FRound, FFloat 'same as in FloatMath

Sin(r) Cos(r) Tan(r) 'Sin/Cos/Tan of radians valSin(r), Cos(r), Tan(r) 'Sin/Cos/Tan of radians val

ASin(r), ACos(r), ATan(r) 'ASin/ACos/ATan of rad val

Log(s), Log10(s) 'Log functions

Exp(s), Exp10(s) 'Exponent functions

Pow(s1, s2) 's1 raised to power of s2

FMin(s1 s2) FMax(s1 s2) 'Min and Max of s1 & s2FMin(s1, s2), FMax(s1, s2) Min and Max of s1 & s2

Radians(deg), Degrees(rad) 'convert between rad/deg

3-35
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Logical Control Structures
The Spin logical control structures are as follows:

if (input < 100)
… code …

ifNot (input < 100)
… do something …

There are also ifNot,
elseIfNot control
structures as well.

… more code …

if (input < 100)
… do something …

else

No braces, all code
beneath indented is
within the IF’s body.

… do so et g …
elseIfNot (input < 200)
… do something else …

else
… do yet something else …

N b k t t t O l fi telse
… do something else …

if (input < 100)
do something

y

case (X+Y)
0: … code to handle zero case
1: … code to handle one case
10,15: … code to handle 10 & 15 case
A*2: code to compute and handle result case

No break statements. Only first
matching case is evaluated.

… do something …
elseif (input < 200)
… do something else …

else
… do yet something else …

A*2: … code to compute and handle result case
30..40: … code to handle 3o to 40 range case
OTHER: … code for the default case

… this code is now outside the case statement
… more code …

You can use these binary operators:
==, <, >, =<, =>, or <>

or these logical operators:
NOT, AND, OR, or XOR

ifNot (input < 100)
… do something …

else
… do something else …

3-36
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

, , ,

Looping Control Structures
Here are some of Spin’s looping control structures:

repeat
… some code …
… more code …

x := 0
repeat while (x < 10)
… do something …

An infinite loop with three
lines of code which all must
be indented.

A WHILE loop

… yet more code … x++

repeat 10
… some code …
… more code …

Repeats 10 times. x := 0
repeat until (x > 10)
… do something …
x++

A REPEAT/UNTIL loop

repeat i from 0 to 10
… some code …
… more code …

Same as a FOR loop
but i must either be a
local or global variable.

A t ti ll t

x++

x := 0
repeat
… do something …
x++

Another WHILE loop

repeat i from 10 to 0
… some code …
… more code …

Automatically counts
backwards for you.

repeat i from 0 to 10 step 2
… some code …

Can step by
specified amount.

x++
while (x < 10)

repeat i from 0 to 10
if (somethingHappened)
next

Goes to next
iteration of loop

repeat
some code …

If you forget to indent your
code, the repeat line by
itself will hang forever
because nothing is in the

… more code … elseif (somethingElseHappened)
quit

else
… do something else …

Jumps out of loop

3-37
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

g
loop body.

First Program: Hello World
Displaying Hello World is not so simple:
– There is no console screen on the robot

C d d i l l i C i– Can send data out wirelessly using RBC.spin
CON

_clkmode = xtal1 + pll16x
xinfreq = 5 000 000

These constants are necessary for
proper serial port I/O timing.

_ q _ _

OBJ
RBC: "RBC"

PUB main

The 1st public
method is
where your
program
begins…it
does not need

Must include in the RBC.spin file.

Call Init method just once to initialize the debugger…waits for RobotTracker.
RBC.Init 'Connect to PC and wait

RBC.Clear
RBC.DebugStr(string("This is a test ... "))
RBC.DebugChar("X")
RBC DebugCharCr("!")

does not need
to be called
main. Creates a zero-terminated string and returns its address.

All of the available debug
display-related commands RBC.DebugCharCr(!)

RBC.DebugStrCr(string("Testing debug Long: "))
RBC.DebugLongCr(100)
RBC.DebugLong(5672)
RBC.DebugCr

are used in this example.
This is a test ... X!
Testing debug Long:
100
5672

3-38
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Double Check
Before uploading a program to the robot:

– robot must have powerp
- from battery cable

– robot must be turned on

– robot MUST be connected
to PC’s USB port

- port must be set up in the Propeller Tool IDE program…

3-39
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Displaying Integers
Can display numbers using Numbers.spin object:

VAR
byte x

d
The ToStr() method converts a
l l i t t iword y

long z

OBJ
RBC: "RBC"
CONV: "Numbers"

long value into a string
formatted to look like a specified
type (in this case a decimal as
specified by the symbol
CONV#DEC).

CONV: Numbers

PUB main
RBC.Init
CONV.InitWe need to initialize these.

Use # to access an
object’s constant.

x := 7
y := -400
z := 100 * ~x + ~~y

RBC.DebugStr(CONV.ToStr(z, CONV#DEC))
RBC C

To display a word we must
use the ~~ to extend the
sign by 16 bits. To display a
byte we use ~ to extend it
by 24 bits We MUST do

Here is the output:
300
-400
7RBC.Cr

RBC.DebugStr(CONV.ToStr(~~y, CONV#DEC))
RBC.Ctr
RBC.DebugStr(CONV.ToStr(~x, CONV#DEC))
RBC.Cr

by 24 bits. We MUST do
this in order to handle
negative numbers properly.

7

3-40
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Displaying Floats
To display floats, you need to use the FloatString.spin
object:

VARVAR
long x

OBJ
F: "Float32Full"
FS: "FloatString"FS: FloatString
RBC: "RBC"

PUB main:
F.Start
RBC.Init

Outputs 3.141593

x := 3.14159265
RBC.DebugStrCr(FS.FloatToString(x))
x := F.SIN(F.RADIANS(45.0))
RBC.DebugStrCr(FS.FloatToString(x))

Outputs 0.707103

3-41
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Device I/O
Each cog can communicate with various devices (e.g.,
sensors, bluetooth) through 32 shared pins

– Each pin 0 – 31 is digital (can be high (1) or low (0))

– An I/O pin should only be set by one cog at ap
time, but all cogs have free access to all 32 pins.

– If two cogs try to set a pin at the same time, g y p
the result of the pin is an “OR”-ing of the requests.

– Here are the rules:Here are the rules:
• pin outputs low only if all active cogs that set it to output also set it to low
• pin outputs high if any active cog sets it to an output and also sets it high

3-42
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

I/O Registers
Device communication is done using 3 registers:

DIRA – specifies the direction of all 32 I/O pins
h f h iOUTA – sets the output state of the 32 pins

INA – reads the input state of the 32 pins

For example,
– the 1st line of the following code specifies pins 26, 21, 20, 8, 7, 6,

5 and 4 to be output pins, defining the remaining pins as input.p p g g p p
– the 2nd line then sets pins 30, 26, 21, 20, 8, 7 and 4 to output

high, the rest being set to output low.

DIRA := %00000100_00110000_00000001_11110000
OUTA := %01000100_00110000_00000001_10010000

“Ignored” since DIRA at position 30 is set to input.

3-43
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Setting/Reading PINs
It is easier to set an individual PIN as follows:

DIRA[10]~~ 'Set P10 to output
OUTA[10]~ 'Make P10 low

Can also specify a range of pin settings:

OUTA[10]~~ 'Make P10 high

d i

DIRA[8..12]~~ 'Set pins P8-P12 to output
OUTA[8..12] := %11001 'Set pins P8 through P12 to 1,1,0,0,1, respectively

Easy to read pins:
temp := INA 'Get the state of ALL 32 I/O pins
temp := INA[10] 'Get the state of pin P10
temp := INA[8..12] 'Get the state of pins P8 through P12

3-44
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Our Robot’s I/O Connections
For our robots, we have already
defined various constants within
the object files that correspond to

CON
PIN_RIGHT_ENCODER_A = 0
PIN_RIGHT_ENCODER_B = 1
PIN_RIGHT_GRIPPER_SERVO = 2
PIN_RIGHT_SERVO = 3
PIN_BLUE_RX = 4the object files that correspond to

the PIN numbers for the various
robot components (shown here) →

PIN_BLUE_TX = 5
PIN_BEACON_AHEAD = 6
PIN_BEACON_RIGHT = 7
PIN_BEACON_BEHIND = 8
PIN_BEACON_LEFT = 9
PIN_DIRRS = 11
PIN SONAR = 12

Below is a list of the object files
that have been created:

PIN_SONAR = 12
PIN_CAMERA_RX = 13
PIN_CAMERA_TX = 14
PIN_BEEPER = 15
PIN_BLOCK_DETECT = 16
PIN_IR_SENSE_LOAD = 17
PIN IR SENSE CLOCK = 18that have been created: _ _ _
PIN_IR_SENSE_DATA = 19
PIN_HEAD_YAW_SERVO = 20
PIN_HEAD_PITCH_SERVO = 21
PIN_COMPASS_SCL = 22
PIN_ACCEL_SCL = 22
PIN_COMPASS_SCA = 23
PIN ACCEL SCA 23

Sensors:
IR8SensorArray.spin
BlockSensor.spin

Control:
ServoControl.spin
Beeper.spin

PIN_ACCEL_SCA = 23
PIN_LEFT_SERVO = 24
PIN_LEFT_GRIPPER_SERVO = 25
PIN_LEFT_ENCODER_B = 26
PIN_LEFT_ENCODER_A = 27

Encoders.spin
PingSensor.spin
DirrsSensor.spin
CMUCam.spin

EasyBluetooth.spin

Optional:
CompassHMC6352.spin
AccelerometerLIS302DL.spin
BeaconSensor spin

3-45
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

BeaconSensor.spin

PropBot ProgrammingPropBot Programming
Sensors and Servos

The Beeper
The Beeper.spin object can be a very useful
tool for debugging.
– has various predefined beep routines:

Beeper.Startup 'Make a "Starting Up" sound
h d ' k " h i " d

It’s a good idea to ALWAYS do
this at the beginning of your
code to know when the robot

you can make your own kind of beep
You need to have this at the
top of your code in order for
any of this code to work:

Beeper.Shutdown 'Make a "Shutting Down" sound
Beeper.Ok 'Make an "Ok" sound
Beeper.Error 'Make an "Error" sound

starts or resets.

– you can make your own kind of beep
by specifying duration and frequency:

any of this code to work:

B B (10 4000) 'M k 4000h b f 10

OBJ
Beeper: "Beeper"

– can even create musical tunes

Beeper.Beep(10, 4000) 'Make a 4000hz beep for 10ms
Beeper.Beep(1000, 6000) 'Make a 6000hz beep for 1sec

3-47
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

The IR Sensor Array
There are 8 IR sensors surrounding the robot:
– All 8 sensors are read in at one time

The 3 front and single back
sensors are powered together
on switch 1. Turn it on if you
want the sensors to work:

1 2 3 4 5 6 7 8O
N

5 are short range (10cm) and 3 are
very short range (5cm)

The 4 side sensors
are powered together
on switch 2. Turn it
on if you want the
side sensors to work:

5 are short range (10cm) and 3 are
very short range (5cm)

1 2 3 4 5 6 7 8O
N

3-48
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Reading the IR Sensor Array
Sensors connected to an 8-bit
Parallel Load Shift Register →
– Allows 8 binary sensors to be read using only 3 I/O lines.

Connect 8 sensors to device, load the data
with one line, then clock the data one at a

PIN_IR_SENSE_DATA

VAR

time to get it through the output line.

SN74HC165N

byte readings[8] ' Stores the latest readings

PUB MAIN
outa[PIN_IR_SENSE_LOAD]~ ' Set pin low, then high to…
outa[PIN_IR_SENSE_LOAD]~~ ' load all sensor readings

' Now shift the register to get each value in turn
readings[7] := 1 - ina[PIN_IR_SENSE_DATA]
repeat i from 1 to 7

outa[PIN_IR_SENSE_CLOCK]~~ ' Set pin high then low to…
outa[PIN_IR_SENSE_CLOCK]~ ' shift to next sensor
readings[7-i] := 1 - ina[PIN IR SENSE DATA]

S S O

PIN_IR_SENSE_CLOCK

3-49
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

g [] [_ _ _]
PIN_IR_SENSE_LOAD

Reading the IR Sensor Array
2Code defined in IR8SensorArray.spin

– Reading the sensor is done by capturing
h d d h j di h

123

4 7the data and then just reading the
appropriate sensor number

– Call capture to get the latest readings

4

5 6

7

– Call capture to get the latest readings
– Call Detect(i) to get the binary value of sensor I

• (i.e., 1 = obstacle, 0 = no obstacle)

0

OBJ
IRSensors: "IR8SensorArray"

PUB main

Example of
how to use it:

PUB main
IRSensors.capture 'Do this to get latest sensor readings

'Check for front collision
if (IRSensors.Detect(1) OR IRSensors.Detect(2) OR IRSensors.Detect(3))

'Front Collision … Avoid Obstacle

3-50
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

The Block Sensor
The block sensor is:
– a Pololu QTR-1RC Reflectance Sensor

d fi d i h l k i fil– defined in the BlockSensor.spin file

Detects objects within short range (around 3mm)
It is used to detect presence of a cylindrical block

Example of
Switch 1 on the lower level
di it h t b ON i

Device uses a “capacitor discharge circuit” that allows the
digital I/O line to take an analog reading of reflected IR by

OBJ

Example of
how to use it:

dip switch must be ON in
order for the Block
sensor to work

1 2O
N

PUB Detect
di [] '

digital I/O line to take an analog reading of reflected IR by
measuring the discharge time of the capacitor. Shorter
capacitor discharge time is an indication of greater reflection
(i.e., closer object).

OBJ
BlockSensor: "BlockSensor"

PUB main
if (BlockSensor.Detect)

'Do something

dira[PIN_BLOCK_DETECT]~~ 'Set as output
outa[PIN_BLOCK_DETECT] := 1 'Charge capacitor
dira[PIN_BLOCK_DETECT]~ 'Make pin input
waitcnt(cnt + 100000) 'Wait a bit
return 1 - ina[PIN_BlockDetect]) 'Read line

3-51
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

DIRRS+ Range Sensor
Our robots are equipped with a DIRRS+ sensor:
– a Digital InfraRed Ranging System

i di di (i)– gives a distance reading (in cm)
– gives valid readings from 10cm to 80cm

Vss Vdd

Vin for 2
of the
modes

l

Vout … to I/O pin.

only

Choose operating mode by soldering jumpers here.

3-52
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

DIRRS+ Range Sensor
Can operate in one of three modes:
– Serial Hex:

d i fi d b f ll d b b l l- device first sends byte 10101010 followed by 1 byte voltage val.
- data is constantly sent on PIN 4 at 4800bps

(8Bits/NoParity/1StopBit) This is roughly every 5ms.

– Synchronous Serial:
- single 8-bit voltage value transmitted on pin 4 at rate

c esp di t cl ck pi 2corresponding to clock on pin 2.
- must generate 8 pulses on PIN 2 and read PIN 4 in between.

Serial CM:– Serial CM:
- string of 3 ASCII characters transmitted serially on PIN 4
- characters correspond to distances in cm (e.g., object at 10cm

d d

3-53
Winter 2012

sends “1”, “0” and “0”)

Chapter 3 – The Spin Language & PropBot Programming

DIRRS+ Range Sensor
We will use the Serial CM mode. Why ?
+ it is simple to use

i l (i) / li+ requires only one (precious) I/O line.
+ it already calculates range in cm for us.

Ranges returned as three bytes.
– first two bytes contain whole cm portion

hi d b i f i f b f /– third byte contains fraction of cm as number of 1/10ths

– if no obstacle detected, may return value of 0 or value in the
high 70’s due to voltage fluctuations (i.e., noise).g g ()

3-54
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Reading the DIRRS+ Sensor
All the “hard work” of serialization is already done
for you in DirrsSensor.spin:

– Just call the DistanceCM function to get an integer range
reading as a long value:

OBJ

Example of
how to use it:

-1 is returned if no object is detected
(e.g., > 80cm away)

i t d if bj t i t l

OBJ
Dirrs: "DirrsSensor"

PUB main | temp
temp := Dirrs.DistanceCM
if (temp =< 20)

0 is returned if object is too close
(i.e., within 10cm away)

p
'too close

else
'add reading of temp cm to map

S it h 7 t b ON i dSwitch 7 must be ON in order
for the DIRRS+ sensor to
work:

1 2 3 4 5 6 7 8O
NInvalid data is returned

i thi

Readings from
10cm to 80cm
are valid

3-55
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

in this range

Reading the DIRRS+ Sensor
Be aware that the readings will fluctuate by a cm or
so between readings:

Our DIRRS
code will
round off toround off to
the nearest
CM.

All these readings were
taken with the sensor
remaining stationary.

3-56
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

The Sonar Sensor
Our robots are equipped with a Ping)))
sonar sensor that emits ultrasonic sound

Emits ultrasonic sound
to measure distance

bto objects
Detection range from about 3cm to 300cm

Data may be invalid if object is < 3cm away

C ts t b t si I/O piConnects to robot using one I/O pin

3-57
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

The Sonar Sensor
Operated by:
– first sending a 0-1-0 pulse to the sensor

h di h l i b k f h– then reading the pulse coming back from the sensor.
width of the returned pulse reflects the distance to the object.

Signal sent
through I/O pin
to sensor.

Sonar signal
sent by sensor. Returned pulse from sensor

indicating distance to object.

3-58
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Reading the Sonar Sensor
Hard work already done in PingSensor.spin file:
– Use it the same way as the DIRRS sensor.

Example of

OBJ
Sonar: "PingSensor"

PUB main | temp
temp := Sonar DistanceCM

how to use it:

Switch 6 must be ON in order
for the Sonar sensor to work:

temp : Sonar.DistanceCM
if (temp =< 20)

'too close
else

'add reading of temp cm to map

1 2 3 4 5 6 7 8O
N

3-59
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

The Wheel Encoders
b h l lOur robots have incremental optical

encoders on each wheel

– emits modulated IR light beam that is
reflected back from wheel’s sticker into
a phototransistera phototransister

– easy to read status of encoder:
tickStatus := ina[PIN LEFT ENCODER A][_ _ _]

Switch 2 on the lower
l l di i h b

Our wheels contains 32
equally spaced stripes

level dip switch must be
ON in order for
the encoders
to work 1 2O

N

3-60
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Reading the Encoders
d d f h h lMust read encoders fast enough so that no “pulse” is

missed

Encoder ticks missed
because reads not
done fast enough.

No ticks missed
because reads are

d i klnow done quickly.

Solution: use a dedicated cog

3-61
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Wheel Encoders
Encoders.spin file contains code to count ticks:

VAR
byte leftA, leftB, rightA, rightB

d l ftC t i htC t

Maintains counters for left & right wheels
individually. A word is used, which
means a maximum count of 32,767 ticksword leftCount, rightCount

PRI Run | newVal1, newVal2
'get the binary readings from left/right encoders signals
leftA := ina[PIN_LEFT_ENCODER_A]
leftB := ina[PIN LEFT ENCODER B]

means a maximum count of 32,767 ticks
which is 5,518cm of traveling.A separate cog is

required in order
not to miss any
ticks. The Start
method is called leftB : ina[PIN_LEFT_ENCODER_B]

rightA := ina[PIN_RIGHT_ENCODER_A]
rightB := ina[PIN_RIGHT_ENCODER_B]
repeat

newValA := ina[PIN_LEFT_ENCODER_A]
newValB := ina[PIN_LEFT_ENCODER_B]

by the user which
runs this Run
method in an
infinite loop.

ifnot ((newValA == leftA) AND (newValB == leftB))
leftA := newValA
leftB := newValB
leftCount++

newValA := ina[PIN_RIGHT_ENCODER_A]
V lB ina[PIN RIGHT ENCODER B]

Looks for changes
in pulse (from 0-1 or
1-0) on each
channel.

Looks for changes
in pulse from 0->1
or 1->0 on each
channel.

newValB := ina[PIN_RIGHT_ENCODER_B]
ifnot ((newValA == rightA) AND (newValB == rightB))

rightA := newValA
rightB := newValB
rightCount++

3-62
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Reading the Wheel Encoders
Reading the encoders is done with 4 methods:
– Start – call once to start the process that counts the ticks

G f C /G i h C h b f i k– GetLeftCount /GetRightCount – returns the number of ticks
that the left/right wheel made since the last counter reset.

– ResetCounters - reset both counters to zero.

OBJ
RBC: "RBC"

Example of
how to use it:

Encoders: "Encoders"

PUB main
RBC.Init
Encoders.Start

t

Must always call
Start method once.

repeat
RBC.DebugStr(string("Encoders(L,R): "))
RBC.DebugLong(Encoders.GetLeftCount)
RBC.DebugChar(",")
RBC.DebugLongCr(Encoders.GetRightCount)

3-63
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

The CMUCam
Robot has a CMUcam1 Vision System
– can be used to track (or identify):

bl k h b ll f i- blocks, other robots, walls of environment
– can track a color “blob” at 17 frames/sec

- tracking color can be changed “on the fly”tracking color can be changed on the fly
– has resolution of 80 x 143 pixels
– can get statistics (e.g., centroid of blob,

 l d i d t)

Switch 5 must be ON in order
for the CMUCam to work:

1 2 3 4 6 8Nmean color and variance data)
– can extract a frame dump of image
– Communicates

1 2 3 4 5 6 7 8O
N

Communicates
serially with
propeller at
115.2k baud

Red light on when camera power
is on. Green light on when “blob”
is identified and being tracked.

3-64
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

The CMUCam
The CMUcam.spin file contains predefined code:
– makes use of FullDuplexSerial.spin and Numbers.spin

i (f i l /)– requires extra cog (for serial I/O)
– here are some configuration-related commands: The window is

the portion of the
image that is used

Start
Initialize the CMUcam (need to call this once)

SetFullWindow
Set the camera's image window to full size (i.e., 80x143)

image that is used
for tracking.

g (,)

SetConstrainedWindow(Xleft, Ytop, Xright, Ybottom)
Set the portion of the camera's image that you
want to process (up to 80x143)

ReadColor
Read the mean color value in terms of red, green and blue components.

GetRed, GetGreen, GetBlue
Get the red, green or blue value from the last call to ReadColor.

3-65
Winter 2012

, g

Chapter 3 – The Spin Language & PropBot Programming

The CMUCam
Here are tracking-related commands:
SetTrackColor(r, g, b, sensitivity)

Set the color to be tracked currently. The sensitivity is the allowable +-
range for each color component during tracking. Call this before calling range for each color component during tracking. Call this before calling
TrackColor.

TrackColor

Track the color previously specified by the call to SetTrackColor.

The following should ONLY be called AFTER calling TrackColor:
GetCenterX, GetCenterY

Return the x/y component of the blob's center of mass.

GetTopLeftX, GetTopLeftY, GetBottomRightX, GetBottomRightY
Return the x/y component of the blob bounding box's topLeft/bottomRight
corner.

Actual value should be (pixels+4)/8GetPixels
Return the number of pixels in the tracked blob.

GetConfidence
Return the confidence level of the track (i.e., 0 to 255).

A value of 8 is poor & 50 is very good.

Actual value should be (pixels+4)/8

3-66
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Calibrating the CMUCam
To determine a color to track, run
CameraColorSampler.spin and follow these steps:

1. plug robot into USB and start Parallax Serial Terminal
2. place object to track (e.g., block) 5cm in front of camera

t th b t t t t th d th it3. turn on the robot to start the program and then wait
4. write down the RGB values from the output window:
Place Object about 5cm in front of the camera …j

Getting color from 10 samples …

Color value of object: (R,G,B) = 189, 21, 16
5cm

Be aware that the lighting conditions in the
room (including the shadow from your hand)
can greatly affect the readings. As you let the
program run, you will notice the variation. Try
to take an average value.

3-67
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

g

Reading the CMUCam
To track a color now …
CON

RED_TRACK = 189
GREEN_TRACK = 21
BLUE_TRACK = 16
SENSITIVITY = 30

OBJ
Camera: "CMUCam"

Choose these values yourself, based on
CameraColorSampler.spin

Camera: "CMUCam"

PUB main
Camera.Start
Camera.SetTrackColor(RED_TRACK, GREEN_TRACK, BLUE_TRACK, SENSITIVITY)
repeatp

Camera.TrackColor
if (Camera.GetCenterX == 0) AND (Camera.GetConfidence == 0)

'Object has not been found
elseif (Camera.GetCenterX > 55) AND (Camera.GetConfidence > 5)

'Object is on the left side
elseif (Camera.GetCenterX < 15) AND (Camera.GetConfidence > 5)

'Object is on the right side
else

'Object is straight ahead

3-68
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Camera Tracking Issues
When robot’s head is straight ahead,
there is a blind spot close to the robot
where the blocks cannot be seenwhere the blocks cannot be seen
– You may want to adjust the head

(USING YOUR PROGRAM … NEVER
MANUALLY!!) to tip forward a little
so that the robot could see the
blocks when they are close Trialblocks when they are close. Trial
and error will inform you of the
“best” tilt amount to use.

3-69
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Servos
Our robots are equipped with 6 servos:
– geared down motors with electronic circuitry

that receive electronic pulses telling it the that receive electronic pulses telling it the
position, speed or direction that the motor
should have.

There are two types of servo motors:

– Standard Servos – receives signals indicating

Switch under bottom
board provides power to
all 6 servos. Turn it off
only when the robot does g g

the position that the servo should hold (good
for controlling grippers, pan/tilt mechanisms, steering
mechanisms etc…)

not need to move (e.g.,
when on desk).

– Continuous Rotation Servos - receives signals
indicating the speed and direction that the
servo should have (good for wheels and pulleys)

3-70
Winter 2012

(g p y)

Chapter 3 – The Spin Language & PropBot Programming

Wheel Servos
The wheel servos are parallax continuous rotation
servos connected to pins 3 & 24

To tur o a servo we must se d it a pulse
A “stopped” motor value of
750 was chosen to

d ith th t f th– To turn on a servo, we must send it a pulse.
– Servos have been adjusted so that:

pulse = 1.5ms keeps servo still 1 3ms (i e 735) CW

correspond with that of the
original BoeBot, but is
somewhat arbitrary.

p p
pulse < 1.5ms rotates servo CW
pulse > 1.5ms rotates servo CCW

1.3ms (i.e., 735)

1.5ms (i.e., 750)

CW

STILL

Over time, however, servos
may need centering
adjustments

1.7ms (i.e., 765) CCW

adjustments.
(e.g., 748 on one servo …

751 on the other)
20ms

3-71
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Gripper and Head Servos
The grippers are controlled by GWS Pico servos
– These are VERY delicate. NEVER, EVER, EVER

try to move the grippers manually always try to move the grippers manually … always
use a program to set their position.

The head’s pan and tilt (i.e., yaw and pitch) are p (, y p)
controlled by HS-85BB Micro Servos
– These are also quite delicate. NEVER move the

head ma ally always se a program to set head manually … always use a program to set
its position. In some cases the head may appear
“stuck”… do not try to force it into a position.
Please be very gentlePlease be very gentle.

Operate on pulses like continuous rotation servos. The pulse
values indicate a position (0° to ~180°), NOT a speed.

3-72
Winter 2012

values indicate a position (0 to 180), NOT a speed.

Chapter 3 – The Spin Language & PropBot Programming

Servo Control - Wheels
ServoControl.spin has been created to control servos:

VAR
long stoppedLeftValue ' stopped state value of left wheel servo
long stoppedRightValue ' stopped state value of right wheel servo

Stopped values determined from
calibration (more on this later).

long leftSpeed ' current speed of left servo
long rightSpeed ' current speed of right servo

PUB Start(leftServoStoppedValue, rightServoStoppedValue, useWheels, useGrippers, usePitch, useYaw)
... Code omitted here ...
result := (cog := cognew(Run, @stack) + 1) > 0

Maintains separate speed
values for each wheel servo.

Booleans to enable movement of servos
PRI Run | i
repeat
MoveWheels
MovePitch
MoveYaw
MoveGrippers

A separate cog is required so that consistent/smooth
speed is obtained. (Must keep sending pulses to servos
in order for them to keep moving). The Start method is
called by the user which begins the Run method

Infinite loop moves
wheels, grippers
and head

Booleans to enable movement of servos

pp
waitcnt(1600000+cnt)

PRI MoveWheels | clkCycles
clkCycles := ((stoppedLeftValue+leftSpeed)*160-1250)#>400 ' duration*160 (=2μs) clock cycles
!outa[PIN_LEFT_SERVO] ' set to opposite state
waitcnt(clkCycles + cnt) ' wait until clk gets there
! i i

called by the user which begins the Run method.and head.

!outa[PIN_LEFT_SERVO] ' return to original state

clkCycles := ((stoppedRightValue+rightSpeed)*160-1250)#>400 ' duration*160 (=2μs) clock cycles
!outa[PIN_RIGHT_SERVO] ' set to opposite state
waitcnt(clkCycles + cnt) ' wait until clk gets there
!outa[PIN_RIGHT_SERVO] ' return to original state

3-73
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Servo Control – Head & Grippers
The code for controlling the head and grippers is
quite similar:

VAR
byte headPitch ' Pitch value for head servo
byte headYaw ' Yaw value for head servo
byte leftGripper ' value for left gripper servo
byte rightGripper ' value for right gripper servo

PRI MovePitch
outa[PIN_HEAD_PITCH_SERVO]~~ 'Set "Pin" High
waitcnt((clkfreq/100_000)*headPitch+cnt) 'Wait for the specified position (units=10μs)
outa[PIN_HEAD_PITCH_SERVO]~ 'Set "Pin" Low

PRI MoveYawPRI MoveYaw
outa[PIN_HEAD_YAW_SERVO]~~
waitcnt((clkfreq/100_000)*headYaw+cnt)
outa[PIN_HEAD_YAW_SERVO]~

PRI MoveGrippers
outa[PIN_LEFT_GRIPPER_SERVO]~~
waitcnt((clkfreq/100_000)*leftGripper+cnt)
outa[PIN_LEFT_GRIPPER_SERVO]~
outa[PIN_RIGHT_GRIPPER_SERVO]~~
waitcnt((clkfreq/100_000)*rightGripper+cnt)
outa[PIN_RIGHT_GRIPPER_SERVO]~

3-74
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Servo Control – Head & Grippers

MAXMIDMIN

Some constants are defined as “fixed positions” for
the servos (although values vary slightly from robot to robot)

MAXMIDMIN

CON
LEFT_GRIPPER_MIN = 215
LEFT GRIPPER MID = 170LEFT_GRIPPER_MID = 170
LEFT_GRIPPER_MAX = 140

RIGHT_GRIPPER_MIN = 104
RIGHT_GRIPPER_MID = 150
RIGHT_GRIPPER_MAX = 181

PITCH_MIN = 95
PITCH_MID = 137
PITCH_MAX = 170

YAW_MIN = 61
YAW_MID = 146
YAW MAX = 225YAW_MAX = 225

3-75
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Servo Control
Starts the cog to control servos Call

Here are the available commands:
Start(leftServoStoppedValue,

rightServoStoppedValue,

Starts the cog to control servos. Call
this once at the beginning of your
code. The 1st two parameters indicate
the values that must be sent to the
servos to stop them. These are
obtained by running the program: g pp

useWheels, useGrippers,
usePitch, useYaw)

y g p g
ServoCalibration.spin.

Sets the speed of the
(ll i

The remaining 4 parameters are booleans
indicating whether or not those particular
servos are going to be used by this programSetLeftSpeed(s)

SetRightSpeed(s)
SetSpeeds(sL, sR)

servos (usually ranging
from -40 to +40). 0
means stop the servo,
+ is forwards and – is
backwards. Higher
values means faster

servos are going to be used by this program.
For example, if the grippers will not be used by
your code, set useGrippers to false. Also,
you may need to set usePitch to true in order
to keep power on the head servo so that it
does not tip forward on its own.

SetHeadPitch(value)
SetHeadYaw(value)

values means faster. does not tip forward on its own.

Sets the position of the head servos (usually ranging from 61 to 225).
Be careful that the head pitch does not cause the head to rub against
the top board and/ or bluetooth device.

SetLeftGripper(value)
SetRightGripper(value) Sets the position of the gripper servos (usually ranging from 61 to 225).

Be careful that the grippers do not press against each other when
closed and that they do not rub against the wheels when fully open.

3-76
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Better Servo Control
You can add your own methods /constants to allow:
– spinning, turning in arcs, stopping

i b k d– moving backwards
– moving at various speeds
– etc– etc..

You can actually move all servos at once
f l h d i h d i i kBe careful! Some head pitch and yaw positions DO NOT work

well on the robot. For example, putting the head down all the
way and then panning it (i.e., rotating along the yaw direction)
can cause physical damage to the sensors and top board of the can cause physical damage to the sensors and top board of the
robot as well as pull cables loose.

3-77
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Ramping the Wheel Servos
Servos experience wear & tear more quickly when
abrupt changes in speed and/or direction are made
(e.g., stopped to very fast).(e.g., stopped to very fast).

To reduce wear & tear, ramping should be used:
d ll l d d l h– gradually accelerate and/or decelerate the

servos over time to the desired speed.

We must be careful to realize that it takes time to
decelerate, and so collision avoidance and other
maneuvering behaviors must compensatemaneuvering behaviors must compensate
– E.g., the front IR sensors will not seem to respond

quickly when deceleration is too slow.

3-78
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Ramping the Wheel Servos
To do this, just keep track of:
– currentLeftSpeed, currentRightSpeed

d i d f d d i d i h d– desiredLeftSpeed, desiredRightSpeed

If you want to turn or change speed:y g p
1. set the desiredLeftSpeed and desiredRightSpeed in the

SetLeftSpeed, SetRightSpeed and SetSpeeds methods.

2. modify the run method in the ServoControl.spin code to
automatically increase/decrease the current speed values a
little each time … until they match the desired speed values.

• The amount of increase/decrease each time through the run
loop represents the rate of acceleration/deceleration.

3-79
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

For More Information …
There are many more functions and procedures
defined in the Spin language

Each sensor also has its own documentation.

For more information on the Propeller:For more information on the Propeller:

– The Propeller’s Documentation website:
http://www parallax com/tabid/442/Default aspxhttp://www.parallax.com/tabid/442/Default.aspx

3-80
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Robot Tracking SystemRobot Tracking System
Robot Tracker v4.0

Robot Tracker 4.0
In the labs, we have a kind of local GPS tracking
system called Robot Tracker.

hi l b h iliThis system employs a webcam on the ceiling to
track black and white tags placed on the robot.

I ill b d id b l () i i f It will be used to provide absolute (x, y) positions for
our robots as well as their angle.

Can send this data to the robot
or process it offline.

3-82
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Robot Tracker - PC Communications
All communications occur through the RobotTracker
– Inter-robot communication

l l i– Planners also communicate
Write your own JAVA code
to plan the robot’s motion.

Robot Trackers communicate
amongst themselves to exchange pose
information as well as user data

Your compiled java code
automatically connects to (and
is started by) the RobotTracker.

PlannerU PlannerU PlannerU

Workstation 1 Workstation 2 Workstation 3

information as well as user data.

PlannerUser

Robot

PlannerUser

Robot

PlannerUser

Robot

Each Robot
communicates
with one
RobotTracker
via bluetooth Robot

Tracker
Robot

Tracker
Robot

Tracker
via bluetooth.

3-83
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Robot Tracker - Advantages
The Robot Tracker is quite useful. It allows you to …
– send data to the robot wirelessly (e.g., tracked position)

i d f h b i l l (d)– receive data from the robot wirelessly (e.g., map data)
– perform wireless debugging
– do inter-robot communications– do inter-robot communications
– use JAVA code (called a Planner) to plan your robot’s

movements
send data to the PC for display (e g estimated path)– send data to the PC for display (e.g., estimated path)

– display mapping data with full Gaussian distributions

It h dl ll bl t th i ti b t th It handles all bluetooth communication between the
robot and the PC.

3-84
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Robot Tracker - GUI

Start/Stop tracking

Save snapshot

Useful Menus

T k d TSave snapshot

Record video clip

S l i

Trace of
robot’s path

taken

Tracked Tag
Indicator

Start plotting
user-defined path

Undo last point on
user-defined pathuser-defined path

Erase user-defined
path

Mouse position

Enable Map Display

Status bar Robot Status Planner Status

3-85
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Bluetooth Setup
Bluetooth devices must be configured
one time in Settings menu

All devices addresses
need to be registered need to be registered
(you should not need to

make any changes here)make any changes here)

First time connections
will require a pairing code
… which is 0000

3-86
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Robot Tracker - Setup
Before each lab session, start the tracker
and select the Traced Robot ID from the
Settings menu to make sure that the IDSettings menu to make sure that the ID
correctly matches the robot that you are using.

You will likely need to calibrate the camera under You will likely need to calibrate the camera under
the (Camera Settings option) since it sometimes has
a hard time identifying the tags Resolution = 800x448

Settings:

... see next slide for details.
Also, each time the computer
has been restarted, you may

g
truecolor = off
Properties ... Camera Control tab:

Focus = 0 Auto = off
Zoom = 32 Pan = 0 Tilt = 0

Video Settings tab:
truecolor = off
Brightness = 161has been restarted, you may

need to re-configure the
properties of the Microsoft
Lifecam here are good values

Brightness = 161
White Balance = 4250 Auto = off
Saturation = 80
Exposure = Auto = on
Contrast = 5
Powerline Frequence (Anti Flicker) = 60Hz

3-87
Winter 2012

Lifecam ... here are good values

Chapter 3 – The Spin Language & PropBot Programming

Robot Tracker - Calibration
Calibrating
the camera Adjust this until the

h l l

When a tag is
identified, it will

You will not get
much better

settings can
be tricky.

whole tag appears along
with lots of noise (521 is
usually a good value)

,
show as colored
with a robot ID
inside.

than 10 fps.

– lighting
conditions
l

There may
be a lot of
“noise” in

th iplays a
huge role

the image.

Adjust this until the
tag is identified,tag is identified,
consistently (17 is
usually a good value)

3-88
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Robot Tracker – View Menu
The View menu allows you to display various things:

The Estimated Path is a pathTh A t l P th th t th b t The Estimated Path is a path
provided by your code indicating the
position that the robot “thought” that
it was in as it moved … more later …

The Actual Path that the robot
traveled since it started.

The User-Plotted Path is a path
provided by clicking at various
locations on the screen. This
path can be passed into your
program.

The Robot Tag markers can be
shown or hidden at any time.

The colors of all paths (and tags) can
b dj dbe adjusted.

The latest webcam image can be
hidden or shown at any time.

3-89
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Robot Tracker -Pose Information
The angle is computed with respect to the horizontal
(positive x-axis) of camera’s image.

(30, 240)

160°(300, 250)Robot’s tracked position
(x, y)

-90°
287° (200, 200)

185°

Tracked angle.
Make sure that the

black wedge is facing
forward (sometimes

the screw holding the

(100, 80)

the screw holding the
tag becomes loose).

The origin (0,0) is always at
the bottom left of the screen.

3-90
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Robot Tracker - Networked Tracking
The Robot Tracker allows you to track
your robot in all 3 zones
– choose Network Settings from Settings menu choose Network Settings from Settings menu
– Tracker must be running on ALL 3 machines.

Disable this when
using a single
tracker.

Each computer
has unique
station ID (see
picture).

Each computer
has unique IPhas unique IP
address which
should not be
changed.

3-91
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Robot Tracker – Tracked Results
The pose of each tracked robot may be
monitored in real time by selecting
Results Summary from the Debugging menu.Results Summary from the Debugging menu.

Each tracker constantly sends updated pose
information to the other trackersinformation to the other trackers. Poses of robots

tracked in this
zone will be
shown in black.

Poses of robots
tracked in other
zones will be
shown in red

3-92
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Robot Tracker – User Paths
You can
create a
path as a

2. Click at
consecutive
locations topath as a

sequence
of points:

locations to
choose
your points .

1. Click here to
begin plotting.

Click to remove last
point added to the

path.

Click here to erase
3. Click here

again when
the whole path.

again when
you are
done.

3-93
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Robot Tracker – Debug Dialogs
There are other dialog boxes (available from the
Debugging menu) that are useful:

The Debug Output dialog can
be used to display debug data
coming from the robot. This data
is sent wirelessly

The Camera Output can be used
to display tracked blobs from the
robot’s CMU camera (but it does is sent wirelessly. (
not display a screen capture of
the image).The Log Output dialog can be

used to display data being sent
to the log file.g

3-94
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Simple Robot Tracking
To track a robot
without wireless
debugging follow

2. Set robot ID to be
tracked

4. Press Play button

debugging follow
these steps in
order:

3 Turn on robot

1. Disable robot
communications

3. Turn on robot,
then place on
floor.

5. Press
Stop
button
when

Indicates that
robot is disabled

you are
done.

6. Pick up robot
and turn it off.

Robot’s path will be displayed as long
as Show Actual Path is selected in the
View menu.

3-95
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Simple Robot Tracking
As the RobotTracker is running, it constantly writes
the robot’s pose data (i.e., x, y, angle) to a trace file:
Thi fil ill b itt i th W ki This file will be written in the Working
Directory which is set from the Settings
menu.

x,y,angle
200,100,56
212,104,63
-1,-1,-1
215,133,96

Each time the RobotTracker is stopped
and restarted, a new trace file is created.

215,133,96
213,100,56
214,103,63
212,125,90
214,128,96
-1,-1,-1

The files are automatically numbered
and named in sequence as follows:

-1,-1,-1
209,155,56
208,154,63
208,154,66
205,143,68
1 1 1

trace1.trc
trace2.trc
trace3.trc etc..

-1,-1,-1
etc...

-1,-1,-1 indicates that robot’s tag
was not identified during that frame
… usually due to lighting conditions,
or obstructions.

3-96
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Robot Tracking – With Debugging
1. Your SPIN code must always connect via bluetooth

to the PC. You must use RBC.spin to do this.
OBJOBJ

RBC: "RBC" 'Required to communicate with PC
Beeper "Beeper" 'Required to use the beeper

PUB main
Beeper.Startup 'Make a "Starting Up" sound (good idea to do this)

RBC.Init 'Connect to PC and wait until Play button is pressed

... Your code will stop/block here until the Play button is pressed on the RobotTracker.

2. Ensure that the correct Traced Robot ID
has been selected.

3 E s th t E ble R b t 3. Ensure that Enable Robot
Communication checkbox is
selected on Settings menu

3-97
Winter 2012

g

Chapter 3 – The Spin Language & PropBot Programming

Robot Tracking – With Debugging
4. Turn on the robot.
5. Press the connection button:

– Connection button will turn to hourglass
– Robot status bar will say

6 Wait until robot connects:
Connecting Robot …

6. Wait until robot connects:
– If connection worked, status bar will say
– If connection timed-out, status bar will say

Robot Connected

Robot Not Connected, y
• Ensure robot turned on and that Traced Robot ID is proper.

7. Press the Play button to start the robot.
8. Use the Stop button when done.
9. Pick up robot and turn it off.

3-98
Winter 2012

p

Chapter 3 – The Spin Language & PropBot Programming

Robot Tracking – With Debugging
All debug output will appear in Debug Output
dialog box, selected from Debugging menu
OBJ

RBC: "RBC" 'Required to communicate with PC

PUB main
RBC.Init 'Connect to PC and wait

RBC.DebugClear
RBC.DebugStr(string("This is a test ... "))
RBC.DebugChar("X")
RBC.DebugCharCr("!")
RBC DebugStrCr(string("Testing debug Long: "))

This is a test ... X!
Testing debug Long:
100
5672

RBC.DebugStrCr(string(Testing debug Long:))
RBC.DebugLongCr(100)
RBC.DebugLong(5672)
RBC.DebugCr Right-click anywhere

for pop-up menu that
allows you to clearAll of the available debug display-related

commands are used in this example.

allows you to clear
the dialog output.

3-99
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Robot Tracker – Servo Calibration
Each robot has slightly different servos which are off
a little with respect to the values that stop them
from moving.from moving.
You can determine these “stopped values” by using
the ServoCalibration.spin code (available on the p (
course website).
Enable robot communications and select
th t b t id b f the correct robot id as before.
Connect the robot as before

h lib i i lOpen the Servo Calibration Dialog
Press the Play button.

3-100
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Robot Tracker – Servo Calibration

Use the up/down sliders for
each wheel servo (one at a
time) to determine which
number causes the wheel to
stop moving. There will be a
range of values that all
cause the servo to remain
still. Choose the middle
value of this range as thevalue of this range as the
stopped value for that servo
(see slide 3-76). You
should check these numbers
each time you change
robots.

Use the other up/down sliders to make fine-tuned adjustments for the various
pre-defined constants for the gripper and head servos (see slide 3-75). You
may want to make such fine adjustments each time you change robots.

3-101
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

CMUCam Monitoring
You can also use the debugger to get feedback from
the CMUcam:
CON

RED = 189
GREEN = 19
BLUE = 16
SENSITIVITY = 30

Bounding box will get bigger
as robot approaches the
block.

See next slide

OBJ
RBC: "RBC"
CAM: "CMUCam"

PUB main
RBC.Init 'Connect to PC and wait for "Start Robot"

CAM.Start
CAM.SetTrackColor(RED,GREEN,BLUE,SENSITIVITY) 'Set color to track

RBC.SendTrackedColorToPc(RED,GREEN,BLUE) 'Send color to RBC
repeat

Sends tracking color
to RBC for display
purposes only.

p a
CAM.TrackColor 'Track the color on the camera
RBC.SendTrackedDataToPc(CAM.GetTopLeftX, CAM.GetTopLeftY,

CAM.GetBottomRightX, CAM.GetBottomRightY)

Sends the bounding box
of the tracked blob for
display purposes.

3-102
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

CMUCam Monitoring
You can also use the CameraColorSampler.spin code
(available on the course website) to determine the
color values that you want to track.color values that you want to track.

CON
RED = 189
GREEN = 19
BLUE = 16
SENSITIVITY = 30

PUB main
...
CAM.SetTrackColor(RED,GREEN,BLUE,SENSITIVITY) 'Set color to track

Hold the object that you want to track about 5cm
from the robot’s camera and look at the from the robot s camera and look at the
Debug Output and Camera Output window
to see the values that are being read in
from the camera

3-103
Winter 2012

from the camera.

Chapter 3 – The Spin Language & PropBot Programming

Robot Data Transfer
In addition to debugging data, you can also
send/receive data to/from the PC arbitrarily

store se sor readi gs to a file– store sensor readings to a file
– get and use location from RobotTracker
– send computed data back to PCsend computed data back to PC

(e.g., estimated position)

Communicating with the PC in this way Communicating with the PC in this way
requires you to write a Planner

– a Planner is JAVA code that communicates with the robot
through the RBC.

3-104
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Using a Planner
Here is a template for writing a planner:

Put your own class name here (e.g., WallFollowingPlanner)

public class ExamplePlanner extends Planner {
// ...

// Constructor for the planner
public ExamplePlanner() { Used for adding a header to the trace file. This appends

Add your own fields here.

setTraceFileUserHeaderData("DIRRS,Sonar");

Pose[] path = getDesiredPathFromTracker();
}

// Write code for all these methods. If you don’t want

Used for adding a header to the trace file. This appends
DIRRS,Sonar to columns in trace file.

Get the user-defined path (i.e., the one drawn by the user from the
RobotTracker). Pose has public x, y and angle fields.

// Write code for all these methods. If you don t want
// to use any of these methods, leave them blank
public void receivedDataFromRobot(int[] data) { ... }

public void receivedPoseFromTracker(Pose robotPose){ ... }

public void receivedDataFromStation(int stationId, int[] data) { ... }

Called whenever the RobotTracker receives data from
the robot. Data is always in the form of an int array
which are always values in the range of 0 to 255.

Called whenever the RobotTracker
receives a pose (i.e., once per frame

}
(

rate). Pose is an object with public
fields: x, y, and angle.

Called whenever the RobotTracker receives data from another
RobotTracker station. The ID of the workstation is supplied as
well as the byte data. All inter-robot data comes in through here.

3-105
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Compiling Your Planner Code
Your planner code must be compiled on its own.

You will need to include
fthe necessary .jar files

and also include in the
class path the folder class path the folder
that contains the
compiled RobotTracker
classes:classes:

In JCreator, add the archive files jmf.jar and
bluecove-2 1 0 jar files and the path tobluecove-2.1.0.jar files and the path to
C:\RobotTracker_v4.0\ClassFiles. The window
here was obtained by selecting Configure/
Options…/ JDK Profiles and select the JDK
installed and then pressing the Edit… button.

3-106
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Using the Planner
1. Load up the planner

– Choose the Working Directory from the
Settings menu This should always point to Settings menu. This should always point to
the folder that contains your assignment work.

– Double-click on Planner Not Loaded (at the bottom right
 f th R b tT k i d)corner of the RobotTracker window)

and choose the compiled class file
for your planner.

f f b– If successful, status bar will say
– In failed, status bar will say

» Examine RobotTracker’s dos prompt window for indication of error.
Possibly you forgot to include one of the necessary planner methods or you

Planner Loaded

Planner Not Loaded

Possibly, you forgot to include one of the necessary planner methods, or you
may have spelled one incorrectly, or may have wrong parameters.

2. Turn on the robot, establish the connection and
press Play button as before

3-107
Winter 2012

press Play button as before.

Chapter 3 – The Spin Language & PropBot Programming

Changes to Your Planner Code
As you test your code, you will often re-compile your
planner code.
E h ti k h d il Each time you make changes and re-compile, you
MUST re-load the planner by double clicking on the
Planner Status bar at the bottom right of the g
RobotTracker window, even though it may already
indicate Planner Loaded (i.e., it is the old version
that is currently loaded and you need the new that is currently loaded and you need the new
version).
Ensure that the Stop button has been pressed p p
before you re-load and that the robot has been reset
before trying to re-establish the connection.

3-108
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Planner Example 1
Example that repeatedly receives RobotTracker poses
and prints that pose
information on the PC using

OBJ
RBC: "RBC"information on the PC using

the wireless debugger.
public class PlannerEx1 extends Planner {

VAR
byte dataIn[7]

PUB main | size
RBC.Init Wait for the pose.

public PlannerEx1() {...}

...

public void receivedPoseFromTracker(Pose p) {
byte[] outData = new byte[6];

repeat
RBC.ReceiveData(@dataIn) Rebuild 2 bytes

into a word and
display. This code
assumes positive
x, y and angle.

This method is called repeatedly
at the frame rate set in the
RobotTracker settings.

First byte received is # of bytes
sent from the planner.

outData[0] = (byte)(p.x / 256);
outData[1] = (byte)(p.x % 256);
outData[2] = (byte)(p.y / 256);
outData[3] = (byte)(p.y % 256);
outData[4] = (byte)(p.angle / 256);
outData[5] = (byte)(p.angle % 256);
sendDataToRobot(tD t)

size := dataIn[0]
RBC.DebugStr("(")
RBC.DebugLong(dataIn[1]*256 + dataIn[2])

RBC.DebugStr(",")
RBC.DebugLong(dataIn[3]*256 + dataIn[4])

, y g
This code
assumes that
the x, y and
angle values
are all positive.

sendDataToRobot(outData);
}

} RBC.DebugStr(string(") angle: "))
RBC.DebugLong(dataIn[5]*256 + dataIn[6])

RBC.DebugStr(string(" degrees."))
RBC.DebugCr

Planner method that sends a
byte[] to the robot.

3-109
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

g

Planner Example 2
Example of displaying an estimated pose on the PC:
public class PlannerEx2 extends Planner {

boolean firstPose;
OBJ

RBC: "RBC"
Used to send the very first

Wait for 1st pose ... comes back as 7
bytes ... ignore 1st as it is the size.

public PlannerEx2() {
firstPose = true;

}
...
public void receivedPoseFromTracker(Pose p) {
if (firstPose) {

VAR
byte dataIn[7]
byte dataOut[6]
long x, y, a

CalculatePose is
a private method that
computes x, y and
angle a. You need to
write this

Used to send the very first
pose to the robot so that it
knows its initial position.

byte[] outData = new byte[6];
outData[0] = (byte)(p.x / 256);
outData[1] = (byte)(p.x % 256);
outData[2] = (byte)(p.y / 256);
outData[3] = (byte)(p.y % 256);
outData[4] = (byte)(p.angle / 256);
outData[5] (byte)(p angle % 256);

PUB main
RBC.Init
RBC.ReceiveData(@dataIn)
x := dataIn[1]*256 + dataIn[2]
y := dataIn[3]*256 + dataIn[4]
a := dataIn[5]*256 + dataIn[6]

write this …

outData[5] = (byte)(p.angle % 256);
sendDataToRobot(outData);
firstPose = false;

}
}
public void receivedDataFromRobot(int[] data) {

int x = data[0]*256 + data[1];

repeat
CalculatePose

dataOut[0] := x / 256
dataOut[1] := x // 256
dataOut[2] := y / 256

Output options are:

OUTPUT_TO_LOG
OUTPUT_TO_FILE
OUTPUT TO LOG AND FILE

Assumes that robot sends back
estimated pose repeatedly.

[] []
int y = data[2]*256 + data[3];
int a = data[4]*256 + data[5];
sendEstimatedPoseToTracker(x, y, a);

}
}

[] y /
dataOut[3] := y // 256
dataOut[4] := a / 256
dataOut[5] := a // 256

RBC.SendDataToPc(@dataOut, 6,
RBC#OUTPUT TO NONE)

OUTPUT_TO_LOG_AND_FILE
OUTPUT_TO_NONE

Planner method that adds a pose to the estimated path. This
path will appear on the RobotTracker assuming that Show

3-110
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

RBC#OUTPUT_TO_NONE)p pp g
Estimated Path is selected from the View menu.

Planner Example 3 Text will
match what
is defined in

Text will
match what
is defined in

Example of sending data to a trace file:

public class PlannerEx3 extends Planner {
x,y,angle,Sonar,EncLeft,EncRight
200,100,56,73,17,28

the planner.the planner.

public PlannerEx3(RBCPlannerHandler handler) {
...
setTraceFileUserHeaderData("Sonar,EncLeft,EncRight");

}

...
This example assumes that the incoming robot data

t i 1 b t di f ll d b t 2 b t

200,100,56,73,17,28
212,104,63,72,29,32,71,36,38
-1,-1,-1,73,37,42
215,133,96,68,41,48,65,45,53,66,49,57
213,100,56,67,53,67,68,59,70
214,103,63,65,65,79,64,78,80,66,80,82...

public void receivedDataFromRobot(int[] data) {
int sonar = data[0];
int el = data[1]*256 + data[2];

contains a 1 byte sonar reading followed by two 2-byte-
words for the left and right encoder counters.

212,125,90,60,83,90
214,128,96,57,89,101
-1,-1,-1,54,99,112, 50,103,123,55,112,130
-1,-1,-1,48,116,140
209,155,56,65,119,152
208 154 63 72 130 157int er = data[3]*256 + data[4];

String traceData = "" + sonar + "," + el + "," + er;

sendDataToTraceFile(traceData);
}

}

208,154,63,72,130,157
208,154,66,89,139,166,90,150,181
205,143,68,101,167,190,102,184,204
-1,-1,-1,122,199,220
etc...

Since robot data
} usually arrives quicker

than robot poses,
multiple readings will
appear for the same
pose line in the file.

Planner method that writes data into the
trace file. You should ensure to match
the header format that you specified in
the constructor.

Sometimes the RobotTracker will miss
certain poses of the robot (due to lighting
changes, obstructions, noise etc…). In
this case, the x, y and angle will all be -1,
yet data sent to trace file will still appear.

3-111
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

y pp

Planner Example 4
Example of sending and receiving data
between workstations:

shows how o e robot’s data ca be se t to the RobotTracker– shows how one robot’s data can be sent to the RobotTracker
on a different workstation.

THIS CODE RUNS ON
STATION 1:

You need not send poses, but you
can in fact send any data …
perhaps various commands to
coordinate other robots.

public void receivedPoseFromTracker(Pose p) {
String data = "(" + p.x + "," + p.y + "," + p.angle + ")";
sendDataToStation(2, data);
sendDataToStation(3, data);

}

STATION 1:

In this example, any
time a pose is received
from the tracker on
station 1, it is sent to
station 2 and 3.

public void receivedDataFromStation(int stationId, String data) {
System.out.println("Received from Station " + stationId + ": " + data);

}

station 2 and 3.

THIS CODE RUNS ON
STATIONS 2 AND 3:

In this example, any }p y
time data is received
from station 1, it is
simply printed out.

3-112
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Planner Example 5
Sending data to the PC for mapping purposes:
public class PlannerEx5 extends Planner {

public PlannerEx5() {
setTraceFileUserHeaderData("Dirrs+|0|-3|0|0 05|3 Sonar|0|4|0|0 10|19 IR6|90|-5|-5 5|0 85|5 5");setTraceFileUserHeaderData(Dirrs+|0|-3|0|0.05|3,Sonar|0|4|0|0.10|19,IR6|90|-5|-5.5|0.85|5.5);

}
...

public void receivedDataFromRobot(int[] data) {
int d = data[0]*256 + data[1];
int s = data[2]*256 + data[3];

RobotTracker expects a very particular format for the trace file
header. This example assumes that the robot sends back
data from three range sensors the DIRRS+ the sonar and

int i = data[4]*256 + data[5];
sendDataToTraceFile("" + d + "," + s + "," + i);

}
}

Each group of sensor data is made up of 6 pieces of information separated by the vertical bar | as follows:
name|angleOffset|xOffset|yOffset|distanceError|angularResolution

data from three range sensors … the DIRRS+, the sonar and
IR sensor #6 (i.e., right side at back). Each sensor
specification is separated by a comma.

4
name ………………… Label given to this data set.
angleOffset …..…….. Angle (in degrees) that sensor is w.r.t. robot’s forward facing angle.

Notice that sonar and dirrs face in same direction as robot
(i.e., 0°offset), while right side facing IR6 is 90°from robot’s
forward direction ... should have been -90 ... oh well).

xOffset & yOffset Distance (in cm) that sensor is w r t robot’s center

dirrs
sonar

4
-3

xOffset & yOffset ….. Distance (in cm) that sensor is w.r.t. robot s center.
Notice that sonar is offset (4,0), dirrs is offset (-3,0)
and IR6 is offset (-5,-5.5).

distanceError ………. Error associated with measurement from sensor
(dirrs is ±5%, sonar is ±10%, IR6 is ±85%).

angularResolution …. Beam width (in degrees) of sensor
(dirrs is 3° sonar is 19° IR6 is 5 5°)

90°IR6
5

-5.5

Offset a little since
width of body ensures
sensor does not
d t t t l

3-113
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

(dirrs is 3 , sonar is 19 , IR6 is 5.5). -5 detect too close

Planner Example 5
Once trace file has been created, you can display a
map:

Click here to
enable
mapping.
RobotTracker
window will
bbecome
larger and a
Mapping
Dialog box
will appear.

3-114
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Planner Example 5
Map Settings dialog allows setting of various mapping
parameters:

Specifies sensor error model for fusing Specifies amount of 6-sigmap g
all range data into the map.

Specifies amount of 6 sigma
resolution to use on the Full
Gaussian setting. 1x is normal,
10x is smoother.

When checked, fills in area underneath
b (f h i fil)

Switch to/from grayscale map

Select to enable/disable the selected
dataset in the map. You will need to
click Generate Map for this to take
effect.

robot (for each pose in trace file) as an
“open” area in the map.

Load a trace file. Does not display map
right away. You can load the trace file
as the robot is building it to see if your
map is coming along nicely.

This list shows all data sets from the
trace file (according to the header that
was defined). Click on each item to
adjust it’s settings on the right.

These are the sensor model
parameters defined in the header of
the trace file for the selected dataset.
You can modify them, but upon
reloading the trace file, they will be

Click here to generate and re-draw map.

j g g

The number of trace file readings for the
data set selected in the list.

reset to the trace file header defaults.

Adjust this to specify the weight of
the selected dataset in the overall
fusion process.

3-115
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

p

Planner Example 5
Data shown grayscale with Incorporate

Raw Data
only. Hide
Image was
selected
from View
menu

Data shown grayscale with
Incorporate Robot’s Shape
unselected & Full Gaussian.

Data shown grayscale with Incorporate
Robot’s Shape selected and Gaussian
Distance Only.

menu.

Grayscale unselected and sonar
dataset only

Dirrs+ data and IR data with
grayscale.

Only ID data with grayscale and
Incorporate Robot’s Shape.

3-116
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

Summary
You should now understand how to:

– write/compile and run Spin programs for the Propeller p p p g p
microprocessor

– operate the robot servos and read the sensors

– coordinate your PC code with your robot code using the
RobotTracker software

3-117
Winter 2012Chapter 3 – The Spin Language & PropBot Programming

