
NAVIGATION
CS 3630 Introduction to Robotics and Perception 	



Frank Dellaert



INTRODUCTION

• Map-based Navigation	



• human-like	



• requires a map	



• Reactive Navigation 

• Elsie	



• Roomba



BRAITENBERG VEHICLES

• Love-Hate	


• Simple Connections	


• No (explicit) plan



RVC BRAITNAV

• v = 2 - (sr + sl)	


• g = k(sr - sl)	


• How to do this with Scribbler?	


• Elsie had 4 behaviors (touch)



RVC BRAITNAV

• v = 2 - (sr + sl)	


• g = k(sr - sl)	


• How to do this with Scribbler?	


• Elsie had 4 behaviors (touch)



SUBSUMPTION ARCHITECTURE

Rodney Brooks



SUBSUMPTION ARCHITECTURE

Rodney Brooks



SUBSUMPTION ARCHITECTURE

Rodney Brooks



LEVELS OF COMPETENCE
• Assumptions:	



• Simple control, complex 
behavior	



• Relative, not absolute	


• Real world	


• Robust



LEVELS OF COMPETENCE
• Assumptions:	



• Simple control, complex 
behavior	



• Relative, not absolute	


• Real world	


• Robust Subsumption:



LEVELS OF COMPETENCE
• Assumptions:	



• Simple control, complex 
behavior	



• Relative, not absolute	


• Real world	


• Robust Subsumption:

Avoid obstacles



LEVELS OF COMPETENCE
• Assumptions:	



• Simple control, complex 
behavior	



• Relative, not absolute	


• Real world	


• Robust Subsumption:

Avoid obstacles

Wander aimlessly



LEVELS OF COMPETENCE
• Assumptions:	



• Simple control, complex 
behavior	



• Relative, not absolute	


• Real world	


• Robust Subsumption:

Avoid obstacles

Wander aimlessly

Explore the world



LEVELS OF COMPETENCE
• Assumptions:	



• Simple control, complex 
behavior	



• Relative, not absolute	


• Real world	


• Robust Subsumption:

Avoid obstacles

Wander aimlessly

Explore the world

Build a map



SUBSUMPTION

• Inputs can be suppressed	



• Outputs can be inhibited



SUBSUMPTION

• Inputs can be suppressed	



• Outputs can be inhibited



SUBSUMPTION

• Inputs can be suppressed	



• Outputs can be inhibited



SIMPLE AUTOMATA

• Bug Algorithms	



• Bug2 Demo:	



• straight line	



• go around obstacles CCW	



• Suboptimal !

load map1!
bug = Bug2(map);!
bug.goal = [50; 35];!
bug.path([20; 10]);



FINITE STATE MACHINES

• States	



• Transitions	



• Events

http://oddwiring.com/archive/websites/mndev/MSB/GD100/fsm.htm

http://oddwiring.com/archive/websites/mndev/MSB/GD100/fsm.htm


MAZE RUNNER

• Andrew Explains



MAP-BASED PLANNING

• Maps:	



• Polygons	



• Occupancy Grid	



• Shortest Path	



• Dijkstra	



• Distance Transform



MAP REPRESENTATIONS

• Polygons	



• vertices edges	



• Very compact	



• Occupancy Grid	



• Memory ~ area	



• Quite doable nowadays



NAVIGATION RVC CLASS



DISTANCE TRANSFORM

dx = DXform(map);!

dx.plan([50;35]);!

dx.plot();!

dx.path([20; 10]);!

dx.plan(goal, 0.1);	





DISTANCE TRANSFORM

dx = DXform(map);!

dx.plan([50;35]);!

dx.plot();!

dx.path([20; 10]);!

dx.plan(goal, 0.1);	





DISTANCE TRANSFORM

• Rolling downhill!

dx = DXform(map);!

dx.plan([50;35]);!

dx.plot();!

dx.path([20; 10]);!

dx.plan(goal, 0.1);	





Real-Time Planning in
Dynamic and Partially

Known Domains
Maxim Likhachev

University of Pennsylvania
maximl@seas.upenn.edu

Sven Koenig
University of Southern California

skoenig@usc.edu

Next: excerpts from…



� Challenges
� complexity/size (high-dim., expensive to compute costs, etc.)
� severe time constraints (e.g., tens of msecs to few seconds)
� robustness to uncertainties in execution, sensing, environment

planning in 4D (<x,y,orientation,velocity>) using Anytime D*

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race

Real-time Planning in Dynamic and 
Partially-known Domains

Maxim



Discretizing Configuration Space

8-neighbor grid 4-neighbor grid

Sven



A*

(Forward) A*
1. Create a search tree that contains only the start.
2. Pick a generated but not yet expanded state s 

with the smallest f-value.
3. If state s is the goal then stop.
4. Expand state s.
5. Go to 2.

Sven

f(x) = g(x) + h(x)
estimated = cost-so-far + heuristic est.



A*

� A* [Hart, Nilsson and Raphael, 1968] uses user-supplied h-
values to focus its search.

� The h-values approximate the goal distances.
� We always assume that the h-values are consistent!
� The h-values h(s) are consistent 

iff they satisfy the triangle inequality:
h(s) = 0 if s is the goal and

���������������
��������������
	
���	�

� Consistent h-values are admissible.
� The h-values h(s) are admissible

iff they do not overestimate the goal distances.

s goal 

succ(s,a)

c(s,a)

h(s)

h(succ(s,a))

Sven



A*

� Search problem with uniform cost

1

goal1start

4-neighbor grid

Sven



A*

7 6 5 4 3 2
6 5 4 3 2 1
5 4 3
6 5 4 1

2
3

01
2

� Possible consistent h-values

5 4 3 2 2 2
5 4 3 2 1 1
5 4 3
5 4 3 1

2
2

01
1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0
0 0 0 0

0
0

00
0

Manhattan Distance Octile Distance Zero h-values

more informed (dominating)

4-neighbor grid

Sven



1

2

A*

� First iteration of A*

0

cost of the shortest path
in the search tree from the 

start to the given state
generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2
6 5 4 3 2 1
5 4 3
6 5 4 1

2
3

01
2

4-neighbor grid

order of expansions
Sven



2

A*

� Second iteration of A*

01
1

1
4
4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2
6 5 4 3 2 1
5 4 3
6 5 4 1

2
3

01
2

1
2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state

Sven



2

A*

� Third iteration of A*

01
2

1

1
4
6

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2
6 5 4 3 2 1
5 4 3
6 5 4 1

2
3

01
2

3 1
2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state

Sven



2

A*

� Fourth iteration of A*

02
2
1
2

1

1
6
6
4
6

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2
6 5 4 3 2 1
5 4 3
6 5 4 1

2
3

01
2

4
3 1
2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state

Sven



2

A*

� Fifth iteration of A*

02
2
1
2

2
1

1

2
6
6
4
6

6
4

4

4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2
6 5 4 3 2 1
5 4 3
6 5 4 1

2
3

01
2

4 5
3 1
2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state

Sven



2

A*

� Sixth iteration of A*

02
2
1
2

2
1

1

3
2 3

6
6
4
6

6
4

4

6
4 4

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2
6 5 4 3 2 1
5 4 3
6 5 4 1

2
3

01
2

4 5 6
3 1
2

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state

Sven



2

A*

� Seventh and last iteration of A*

02
2
1
2

2
1

1

3
2
4
3
4 6

6
4
6

6
4

4

6
4
6
4
(4)

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

g-values h-values f-values+ =

7 6 5 4 3 2
6 5 4 3 2 1
5 4 3
6 5 4 1

2
3

01
2

4 5 6
3

1
11

2
(7)

4-neighbor grid

order of expansions

cost of the shortest path
in the search tree from the 

start to the given state

Sven



A*
7 6 5 4 3 2
6 5 4 3 2 1
5 4 3
6 5 4 1

2
3

01
2

5 4 3 2 2 2
5 4 3 2 1 1
5 4 3
5 4 3 1

2
2

01
1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0
0 0 0 0

0
0

00
0

Manhattan Distance Octile Distance Zero h-values

more informed (dominating)

4 5 6
3

1
11

2
(7)

6
3 4 7

5
1
11

2
(8)

Uniform-cost search
Breadth-first search

4-neighbor grid

Sven



Incremental Heuristic Search

search task 1 slightly different 
search task 2

slightly different 
search task 3

Sven



Incremental Heuristic Search

� Incremental heuristic search speeds up A* searches for 
a sequence of similar search problems by exploiting 
experience with earlier search problems in the 
sequence. It finds shortest paths.

� In the worst case, incremental heuristic search cannot be 
more efficient than A* searches from scratch
[Nebel and Koehler 1995].

Sven



Incremental Heuristic Search
� Fringe Saving A* (FSA*) 
� Adaptive A* (AA*) 
� Lifelong Planning A* (LPA*), D* Lite and Minimax LPA*
� Comparison of D* Lite and Adaptive A*
� Eager and Lazy Moving-Target Adaptive A* (MTAA*)
� Anytime Replanning A* (ARA*)
� Anytime D*

Sven
planning tim

e per expansion increases
num

ber of expansions decreases



D* Lite

�

5

5

5

5

4

4

4

4

3

3

3

3

3

2

2

2

3

2

1

1

3

2

1

0

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

3

2

1

1

3

2

1

0

5

5

5

5

4

4

4

5

3

3

5

3

2

3

2

1

1

3

2

1

0

5

5

5

5

4

4

4

5

3

3

5

3

2

3

2

1

1

3

2

1

0

5

5

5

5

4

4

4

5

3

3

5

3

2

3

2

1

1

3

2

1

0

8-neighbor grid

goal
distance

Sven



D* Lite

� Random grids of size 129 x 129

replanning time
uninformed search from scratch 296.0 ms

heuristic search from scratch 10.5 ms
incremental uninformed search 6.1 ms

incremental heuristic search
D* [Stentz, 1995]

D* was probably the first true incremental heuristic 
search algorithm, way ahead of its time.

D* Lite

4.2 ms

2.7 ms

sp
ee

d-
up

 1
10

x
Sven



ROADMAP METHODS

• Do some setup work	



• Make queries cheap	



• Two methods:	



• Voronoi Roadmap 

• PRM



PROBABILISTIC ROADMAPS

• Randomly sample points	



• Connect if no obstacle	



• Plan using graph-search	



• Disadvantages?

randinit!
prm = PRM(map)!
prm.plan()!
prm.plot()!
prm.path([20;10],[50;35]);

Lydia E. Kavraki

http://www.youtube.com/watch?
v=SG6BImrHGk4

http://www.youtube.com/watch?v=SG6BImrHGk4


PROBABILISTIC ROADMAPS

• Randomly sample points	



• Connect if no obstacle	



• Plan using graph-search	



• Disadvantages?

randinit!
prm = PRM(map)!
prm.plan()!
prm.plot()!
prm.path([20;10],[50;35]);

Lydia E. Kavraki

http://www.youtube.com/watch?
v=SG6BImrHGk4

http://www.youtube.com/watch?v=SG6BImrHGk4


RRT
• Rapidly-exploring Random Tree	



• Uses exact kinematic model	



• Start with initial pose ξ0	



•At each time:!

•pick random pose ξrand!

•find nearest pose ξnear!

•move towards it for 
fixed time, reaching ξnew

kinematic model

see also http://msl.cs.uiuc.edu/rrt/gallery.html

http://msl.cs.uiuc.edu/rrt/gallery.html


RRT*

• Rewires the tree if shorter paths can be found


