NAVIGATION

CS 3630 Introduction to Robotics and Perception
Frank Dellaert

INTRODUCTION

» Map-based Navigation
* human-like

* requires a map

* Reactive Navigation
> ESIE

« Roomba

BRAITENBERG VEHICLES

VEHICI.ES

in Synthetic Psychology

'ifé',Valentino Braitenberg
e
st

- Love-Hate
B ifnple Connections
* No (explicit) plan

RVC BRAITNAV
=

XY position Speed

Right sensor
i > []
3
Steer

Left sensor
<]<
Gain
1 function sensor = sensorfield(x, v)
2 xc = 60; yc = 90;
3 sensor = 200./((x-xc).”2 + (y-yc).”2 + 200);

*v=2-(st59)

* g = k(s- 9))
* How to do this with Scribbler?
sie had 4 behaviors (touch)

RVC BRAITNAV
=

XY position Speed

Right sensor
i > []
3
Steer

Left sensor
<]<
Gain
1 function sensor = sensorfield(x, v)
2 xc = 60; yc = 90;
3 sensor = 200./((x-xc).”2 + (y-yc).”2 + 200);

*v=2-(st59)

* g = k(s- 9))
* How to do this with Scribbler?
sie had 4 behaviors (touch)

8 8 8 8 8 3 8 8

-
o

| ‘,7 2 rk" ¢ —
Rodney Brooks

SUBSUMP TION ARCHITECTURE

——§ Actuators

perception

modelling

planning
motor control

" task execution

SUBSUMP TION ARCHITECTURE

——§ Actuators

perception

modelling

planning
motor control

task execution

L

reason about behavior of objects

plan changes to the world

identify objects

monitor changes

——P Actuators
build maps

explore

wander

avoid objects

SUBSUMP TION ARCHITECTURE

EEvVELS OF COMPE ENSS

* Assumptions:

* Simple control, complex
behavior

« Relative, not absolute
« Real world
« Robust

EEvVELS OF COMPE ENSS

* Assumptions:
* SImple control, complex

behavior
 Relative, not absolute
» Real world
» Robust Subsumption:

EEvVELS OF COMPE ENSS

* Assumptions:
* SImple control, complex

behavior
 Relative, not absolute
» Real world
» Robust Subsumption:

evel 2

evel 1

¥-p Actuators

e
1.

Avoid obstacles

EEvVELS OF COMPE ENSS

* Assumptions:
g linplcrcontrol, complex

behavior
 Relative, not absolute
» Real world
» Robust Subsumption:

EEvVELS OF COMPE ENSS

* Assumptions:
g linplcrcontrol, complex

behavior
 Relative, not absolute
» Real world
» Robust Subsumption:

' |
| |

t I
'F——'[level 8 '
T——"l Explore the world

#———‘l Wander aimlessly

Sensors 4 4 Avoid obstacles -%—p Actuators

EEvVELS OF COMPE ENSS

* Assumptions:
g linplcrcontrol, complex

behavior
 Relative, not absolute
» Real world
» Robust Subsumption:

] |
| |
t I
"—-—Ol Build a map :
r——"l Explore the world
#———‘l Wander aimlessly

Sensors 4 4 Avoid obstacles %—p Actuators

EEBSUMP [HON

ooooo
>
Inputs OQOutputs
S
10 ~
N Reset

* Inputs can be suppressed

» Outputs can be inhibited

EEBSUMP [HON

>
Inputs Outputs
S
10 f -
N Reset

* Inputs can be suppressed

» Outputs can be inhibited

WWWWWW

collide

OOOOO

heading

EEBSUMP [HON

Inhibitor
:', >
Inputs Outputs
S
10 ? -
Reset

Suppressor

* Inputs can be suppressed

» Outputs can be inhibited

robot

sonar

map

- feelforce

force

ing
wander

—+ collide &-— robot

motor-status

way

avoid @—

oal
& i
grabber goal

robot

1

heading command
pathplan| turn
begin str:xilgh o P~ done
-‘ nostop
* integral
travel
—pintegrate

l_g monitor

SIMPLE AUTOMATA

* Bug Algorithms
BElo2 Demo:

» straight line

* 0 around obstacles CCW

« Suboptimal !

load mapl

bug = Bug2(map);
bug.goal = [50 Si5NEs
bug.path ([20 N

BN E S TATE MACHITNESS

« States

* [ransitions

POCMAN ELTS jCOLLISION
PONMER PILL + o+ WITH PACMAN @@
’ }
¢ Fvents Q

UPDATE UPDATE UPDATE
MOVEMENT MOVEMENT MOVEMENT

Q MOVETO MOVE FROM ®®
PACMAN PACMAN

http://oddwiring.com/archive/websites/mndev/MSB/GD [00/fsm.htm

TIMER ENDS

T N
SN A
T N\
S
T N\

._./

http://oddwiring.com/archive/websites/mndev/MSB/GD100/fsm.htm

MAZE RUNNER

Elapsed time passed

Intersection detected!

Elapsed time passed

Elapsed time passed

and next turn is 'L’

Elapsed time passed

and next turn is 'R’

Elapsed time passed

» Andrew Explains

MAP-BASED PLANNING

s

* Polygons

» Occupancy Grid

* Shortest Path

* Dijkstra

B ciance Transform

MAP REPRESENTATIONS

o

* Polygons

B llices edges
* Very compact
» Occupancy Grid
* Memory ~ area

» Quite doable nowadays

Navigation superclass. The examples in this chapter are all based on classes derived from the
Navigation class which is designed for 2D grid-based navigation. Each example consists of essen-

tially the following pattern. Firstly we create an instance of an object derived from the Navigation
class by calling the class constructor.

>> nav = MyNavClass (world)

which is passed the occupancy grid. Then a plan to reach the goal is computed
>> nav.plan(goal)

The plan can be visualized by
>> nav.plot()

and a path from an initial position to the goal is computed by

>> p = nav.path(start)
>> D nav.path()

where p is the path, a sequence of points from start to goal, one row per point, and each row

comprises the x- and y-coordinate. If start is not specified, as in the second example, the user is
prompted to interactively click the start point. If no output argument is provided an animation of

the robot’s motion is displayed.

NAVIGATION RVC CLASS

DISTANCE TRANSFORM

1250

1200

150

100

50

dx = DXform(map);

clempilfani(['50::35]) ;
dx.plot();
dx.path([20; 10]);

gigaian(goat,; 0.1 ;

DISTANCE TRANSFORM

1250

1200

150

300 —
100 ,
! 200 -
3
b
3
50 ; 100
)y 100 —
X 0 -
dx = DXform(map); 0
clempilfani(['50::35]) ;
X 100 0

dx.plot();
dx.path([20; 10]);

gigaian(goat,; 0.1 ;

DISTANCE TRANSFORM

1250

1200

150

300 —
100 ,
! 200 -
3
b
3
50 ; 100
)y 100 —
X 0 -
dx = DXform(map); 0
clempilfani(['50::35]) ;
X 100 0

dx.plot();
dx.path([20; 10]);

gigaian(goat,; 0.1 ;

* Rolling downhlll!

Next: excerpts from...

Real-Time Planning In
Dynamic and Partially
Known Domains

Maxim Likhachev
University of Pennsylvania
maximl@seas.upenn.edu

Sven Koenig
University of Southern California
skoenig@usc.edu

Real-time Planning in Dynamic and Maxim

Partially-known Domains
m Challenges

complexity/size (high-dim., expensive to compute costs, etc.)
severe time constraints (€.g., tens of msecs to few seconds)

robustness to uncertainties 1n execution, sensing, environment

planning 1n 4D (<x,y,orientation,velocity>) using Anytime D*

A
f)

‘I i
.

e ma——

-

part of efforts by lartanracing team from CMU for the Urban Challenge 2007 race

Sven

Discretizing Configuration Space

8-neighbor grid 4-neighbor grid

Sven

A* f(x) = g(x) + h(x)
estimated = cost-so-far + heuristic est.
(Forward) A*

1. Create a search tree that contains only the start.

2. Pick a generated but not yet expanded state s
with the smallest f-value.

3. If state s is the goal then stop.
4. Expand state s.
5. Goto 2.

Sven
A*

m A" [Hart, Nilsson and Raphael, 1968] uses user-supplied h-
values to focus its search.

m [he h-values approximate the goal distances.
m \We always assume that the h-values are consistent!

m The h-values h(s) are consistent succ(s,a)
Iff they satisfy the triangle inequality: c(s.a ~..h(succ(s,a))
h(s)=0ifsisthegoaland = (- RS @

h(s) < c(s,a) + h(succ(s,a)) otherwise. °

Sven
A*

m Search problem with uniform cost

4-neighbor grid

A*

m Possible consistent h-values

Sven

7165141325432 2110070701010
6 (5432|1543]2 1{7]0[0(0]0|070
5041321105432 0((]0[{010]0]|07]0
6 (5143|121][5(4]|3]2 1{7]0[0(0]0|10]0

Manhattan Distance

Octile Distance

Zero h-values

—

4-neighbor grid

more informed (dominating)

Sven

order of expansions

A*

m First iteration of A* 1 E

716154132
61541321

0 s|a(3|2]1]0 (2
6154|321

g-values + h-values = f-values

cost of the shortest path
in the search tree from the
start to the given state

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

4-neighbor grid

Sven

order of expansions

A*

m Second iteration of A* 1
2
7161514 |32
61514321 4
1 51413121110 4
6 5/4 13|21 4
g-values + h-values = f-values

cost of the shortest path
in the search tree from the
start to the given state

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

4-neighbor grid

A*

m [hird iteration of A*

Sven

order of expansions

716154132

615141321

1 514(3(2]1/0

2 61514 |13|2]|1
g-values + h-values = f-values

cost of the shortest path

in the search tree from the

start to the given state

4-neighbor grid

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

A*

m Fourth iteration of A*

Sven

order of expansions

716154132

2 615141321

21 514(3(2]1/0

2 61514 |13|2]|1
g-values + h-values = f-values

cost of the shortest path
in the search tree from the
start to the given state

4-neighbor grid

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

Sven

order of expansions

A*

m Fifth iteration of A*

2 716154132

2 615141321

21 514(3(2]1/0

2 61514 |13|2]|1
g-values + h-values = f-values

cost of the shortest path
in the search tree from the
start to the given state

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

4-neighbor grid

Sven

order of expansions

A*

m Sixth iteration of A*

213 716154132

2 615141321

21 514(3(2]1/0

2 61514 |13|2]|1
g-values + h-values = f-values

cost of the shortest path
in the search tree from the
start to the given state

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

4-neighbor grid

Sven

order of expansions

A*
41516
m Seventh and last iteration of A* 311 (7)
2
2131411716543]2 g g g
2 6514321 g 44444
2 11 51413121110 6-+4
2 6543 |2]1 6+ 4
g-values + h-values = f-values

cost of the shortest path
in the search tree from the
start to the given state

4-neighbor grid

generated but not expanded state (OPEN list)
expanded state (CLOSED list)

Sven

Uniform-cost search

*

A Breadth-first search
716 (514131215143 [2(12121/0/0]0]0]010
654 (3 (2|1 51413121111 0(0|0]0]010O0
5141312111054 (3(2|1]0(]l0l0]0O0]0O0]010O
654321 514132 1 0(0|0]0]01]0

Manhattan Distance

Octile Distance

Zero h-values

6

6 3047

3 E 2 B
>

4-neighbor grid

more informed (dominating)

Incremental Heuristic Search

search task 1

slightly different
search task 2

slightly different
search task 3

Sven

Sven

Incremental Heuristic Search

m |Incremental heuristic search speeds up A* searches for
a sequence of similar search problems by exploiting
experience with earlier search problems in the
sequence. It finds shortest paths.

m |In the worst case, incremental heuristic search cannot be
more efficient than A* searches from scratch
[Nebel and Koehler 19935].

0P
<
)
-

Incremental Heuristic Search
Fringe Saving A* (FSA*)
Adaptive A* (AA*)
Lifelong Planning A* (LPA*), D* Lite and Minimax LP
Comparison of D* Lite and Adaptive A*

Eager and Lazy Moving-Target Adaptive A* (MTAA*)
Anytime Replanning A* (ARA¥)
Anytime D*

dxa Jo Jaqwnu

_

>
S9SealdapF suoisue
saseaJoul uoisuedxas Jad swi) buiuueld

Sveq

goal

D* the distance

8-neighbor grid

speed-up 110x

D* Lite

m Random grids of size 129 x 129

Sven

replanning time
uninformed search from scratch 296.0 ms
heuristic search from scratch 10.5 ms
incremental uninformed search 6.1 ms
Incremental heuristic search
D* [stentz, 1995] 4.2 ms
D* was probably the first true incremental heuristic
search algorithm, way ahead of its time.
D* Lite 2.7 ms

BROADMAP ME TROES

v (pixels)

* Do some setup work
BNERENGlieries cheap

* [wo methods:

* Voronoi Roadmap

v (pixels)

IR

d 10 20 30 40 50 60 70 80 90 100
u (pixels)

PROBABILIS TIC ROADMAPS

Lydia E. Kavraki

Randomly sample points
Connect If no obstacle
Plan using graph-search

Disadvantages!?

100

90

(1)

k..

(1)

50 ..

40 F--

30 -

20 -

10}-.

o
= -

: T e~

R

randinit

prm = PRM(map)

prin-plani(s)

prm.plot ()
prm.path([20:10], [50k SEuEE

http://www.youtube.com/watch?
v=SG6BImrHGk4

http://www.youtube.com/watch?v=SG6BImrHGk4

PROBABILIS TIC ROADMAPS

Lydia E. Kavraki

Randomly sample points
Connect If no obstacle
Plan using graph-search

Disadvantages!?

N

- r——

o

B/
7
;

i\
2

—_
—~
e
s
R
TN

randinit

prm

PRM (map)

prin-plani(s)
prm.plot ()
prm.path([20:10], [50k SEuEE

http://www.youtube.com/watch?

v=SGEBIMrHGK4

http://www.youtube.com/watch?v=SG6BImrHGk4

RR [

* Rapidly-exploring Random Iree

e Uses exact kinematic mode|

» Start with initial pose &g
*At each time:

e pick random pose Erang

e find nearest pose Enear

Beie Eowards it for SR N

lted time, reaching Epew
see also http://msl.cs.uiuc.edu/rrt/gallery.htmi

http://msl.cs.uiuc.edu/rrt/gallery.html

-2

d

107 W0r
\
8 8)
6 6)
4 4

10° A A A ! s0! - -
-0 4 -6 -4 -2 0 2 4 6 8 W -0 -8 -&

J st Rt 4 4 " S - it el ‘0{ AL B VB FASW A & FLEC NVEPAT AN BTN .

-10 -8 -8 4 -2 0 2 4 8 8 0w -0 -8 -& 4 -2 o 2 B é 8 0 - -8 -6 -4 -2 0 2 4 8 8 10

(a) RRT in iteration 1,000

> W LN
-)
: N\ oA N\ \
- A\
- . N
/4 — 3
4 ¥ — »
!
A
7 - A
| ' | -4} \ \
J 4}
)
i)
: \ { 8! A
s !
| } ’ A
P)
b { -8
| ! # y)
. » -

(d) RRT" in iteration 1,000 (e) RRT* in iteration 3,000 (f) RRT* in iteration 10,000

* Rewires the tree If shorter paths can be found

