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I.ocalization

* Pretty old concept ©

* Outdoors
* Then:
* Dead reckoning
* sky
* FEarlier this century: radio
* Now: GPS

e Indoors:
o 9

 (Qculus Rift




The Bayesian Paradigm

 Knowledge as a probability distribution

60% Rain

40% dry




Probabilities as Knowledge

Question:

Rain tomorrow? 20%, sunny today, justraining
(DATA) (PRIOR MODEL)

Rain OCT12? 70%, farmers know

PRIOR = learned from experience

This is a Binary Event:
100% = certainty

0% = will not rain



Bayes Rule

Conditional Probability Bayes Rule
PRIT)= P(Jlj 2 s P(T | R)P(R)
(7) P(R|T) ===
P(T|R)=P(RDT) (7)
P(R)

X: state Z: measurement

P(Z,X) _P(ZIX)P(X)

P(X1Z)=
P(Z) P(Z)

_ P X)P(X)
2 P(Z | X"P(X"

x P(Z | X)P(X)




1D Robot Example

IETS [ | [ P ———

2 4 6 8 0 12 14 16 18 20 22 24

0.2F

100 |

50 II II .
0

2 4 6 o 0 12 14 16 18 20 22 24

0.2} -
01 ||II .
0

2 4 6 o 10 12 14 16 18 20 22 24

Prior P(X)

Likelithood
L(X;Z)

Posterior
P(X|Z)



Bayesian Filtering

 Two phases:
— 1. Prediction Phase

— 2. Measurement Phase




Bayes Filter Equations

Recursive Bayes Filter Equation:

Motion Model
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Predictive Density




1. Prediction Phase OQQ

P(x) = 2 P(xx,u) P(x)



2. Measurement Phase

T
Z
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P(x,|z) =k P(z[x) P(x)






Animation




Global Localization

Robot position- .7 -




Global Localization (2)

Robot position



Global Localization (3)

Robot position



Markov Localization

* Fine discretization over {X.,y theta}

e Very successful: Rhino, Minerva, Xavier...
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Dynamic Markov Localization

 Burgard et al., IROS 98
e [dea: use Oct-trees
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Hidden Markov Models
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Discrete vs. Continuous

P(O<x<20)=1
PO<x<10)=1
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Probability of Robot Location

P(Robot Location)

State space = 2D, infinite #states

X




Sampling as Representation

P(Robot Location)




3D Particle filter for robot pose:

Monte Carlo Localization
Dellaert, Fox & Thrun ICRA 99




Sampling Advantages

e Arbitrary densities

e Memory = O(#samples)
e Only in “Typical Set”

e (reat visualization tool !

* minus: Approximate

First appeared in 70" s, re-discovered by Kitagawa,
Isard & Blake in computer vision,
Monte Carlo Localization in robotics



Bayesian Filtering

e Two phases: 1. Prediction Phase
2. Measurement Phase
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1. Prediction Phase O:>©




2. Measurement Phase
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3. Resampling Step




Monte Carlo Localization

Sk-l S | Kk weighted Sk
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Predict Weight Resample




Particle Filter Tracking

P(X:|X;1)
State X, ny > \XD

Z| X¢)

v v v P (
Measurement ( Z, , Z @

Monte Carlo Approximation of Posterior:

P(X,q |2t 1) = (XD, w0 Y,

Q
Q




Two-step View of the Particle Filter

Empirical predictive density = Mixture Model

) = P(ZX()



Bayes Filter and Particle Filter

Motion Model
Recursive Bayes Filter Equation: /

%

P(XIZ) = KP(ZIX) [ [POXGIX - )P(Xia]2 )
Xt—1

. Predictive Density
Monte Carlo Approximation:

P(X|Z") ~ kP(Z;|X;) ZMT LPOX X))




Conclusions

Powerful yet efficient
Significantly less memory and CPU
Very simple to implement



Take Home Message

Representing uncertainty using samples
1s powerful, fast, and simple !



