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1 Common Sense Information Fusion

When we have two (scalar) measurements of equal weight, we can just average
them to form a point estimate of the (scalar) unknown x:

x̂ =
z1 + z2

2

When we trust z1 more, we could give it more weight and form a weighted average,
with w1 > w2:

x̂ =
w1z1 + w2z2

w1 + w2
(1.1)

2 Bayes Law

Can we know more about x than just a point estimate? A principled way to do
sensor fusion is to use Bayes law:

P (x|z1, z2) ∝ P (x)L(x; z1)L(x; z2)

where P (x) is a prior density over x, and L(x; z) is the likelihood of x given the
measurement z. The likelihood is defined as

L(x; z) ∝ P (x|z)

i.e., proportional to the conditional density P (x|z) that tells us how probable it is
to receive a measurement z given a value x. However, when not x but z is given,
we call the resulting function of x a likelihood function.
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3 Discrete Case

If x is discrete, i.e., x ∈ {1..K}, then both P (x) and L(x; z) are vectors, and we
can just multiply them point-wise and normalize to obtain the posterior:

P (x = k|z1, z2) =
P (x = k)L(x = k; z1)L(x = k; z2)∑K

k=1 P (x = k)L(x = k; z1)L(x = k; z2)

Note it does not matter if z is discrete or continuous: we assume the likelihood
vectors L(x; z) can be computed given any value of z.

4 Scalar Case

If x is scalar, then things are not so simple in general: both the prior P (x) and the
likelihood functions L(x; z) can be arbitrarily complex functions, so how do we
even represent those?

4.1 Gaussian Measurement Noise

If both x and the measurements z are scalar, a very common situation is when the
measurement z is simply a corrupted version of the unknown value x,

z = x + n

where n is some additive noise with some density P (n). A convenient modeling
choice is to assume the noise is Gaussian, i.e., drawn from a normal distribution,
which means the conditional density P (z|x) is also a Gaussian density on z:

P (z|x) = k exp
1
2

(
x − z

σ

)2

When z is given, the corresponding likelihood function is

L(x; z) = exp
1
2

(
x − z

σ

)2

By a happy coincidence, this is also a Gaussian, but please note that this is a very
special case: in general, when the measurement is not simply a linear function of
x, we will not be so lucky. Note above we also dropped the constant k: a likelihood
function just has to be proportional to P (z|x).
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4.2 Fusing two Gaussian Measurements

Now we are in a position to apply Bayes law:

P (x|z1, z2) ∝ P (x)L(x; z1)L(x; z2)

= 1 × exp
1
2

(
x − z1

σ1

)2

× exp
1
2

(
x − z2

σ2

)2

where we assumed the prior P (x) was non-informative. As it happens, multiplying
two Gaussians will yield a Gaussian again. This is true because a Gaussian is just
the exponential of a quadratic, and adding two quadratics is easily seen to be a
quadratic again. But what is its mean? To find that, take the negative log and
minimize:

x̂ = arg max
x

P (x|z1, z2)

= arg min
x

− log P (x|z1, z2)

= arg min
x

{
1
2

(
x − z1

σ1

)2

+
1
2

(
x − z2

σ2

)2
}

Taking the derivative of the argument and setting to zero we obtain

x̂ − z1

σ2
1

+
x̂ − z2

σ2
2

= 0

or
x̂ =

w1z1 + w2z2

w1 + w2
(4.1)

with w1 = 1/σ2
1 and w2 = 1/σ2

2 . The weights here indicate the information each
measurement carries, and it is equal to the inverse variance. The information of a
measurement is equal to the inverse of its variance.

4.3 The shape of the Posterior

Information is additive: the information of the fused estimate x̂ is equal to w1 +
w2, and hence the variance of the resulting Gaussian P (x|z1, z2) (with mean x̂) is

σ2 =
1

w1 + w2
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5 Multivariate Case

In the n-dimensional multivariate case, this generalizes to the information matrix,
defined as the inverse of the covariance matrix R:

Λ ∆= R−1

and Equation 4.1 generalizes to

x̂ =
Λ1z1 + Λ2z2

Λ1 + Λ2
= (Λ1 + Λ2)

−1 (Λ1z1 + Λ2z2)

Here again, information is additive: the information matrix of the fused es-
timate x̂ is equal to Λ1 + Λ2, and hence the covariance matrix of the resulting
multivariate Gaussian is

R = (Λ1 + Λ2)
−1

6 Kalman Filter

The general Bayes filter is

P (xt|Zt) ∝ P (zt|xt)P (xt|Zt−1)

= P (zt|xt)
ˆ

xt−1

P (xt|xt−1)P (xt−1|Zt−1)

In a Kalman filter, we assume that the likelihood, the motion model, and the poste-
rior are all Gaussian. If that is the case, the predictive density will also be Gaussian.
We see this by realizing that

P (xt, xt−1|Zt−1) = P (xt|xt−1)P (xt−1|Zt−1)

The negative log is, for the scalar case

− log P (xt, xt−1|Zt−1) =
1

2σ2
u

(xt − xt−1 − ut−1)2 +
1

2σ2
t−1

(xt−1 − µt−1)2

= 0.5wu(xt − xt−1 − ut−1)2 + 0.5wt−1(xt−1 − µt−1)2

Hence, the mean of the joint P (xt, xt−1|Zt−1) is simply (xt−1, xt) = (µt−1, µt−1+
ut−1), and the corresponding information matrix is the curvature of this 2D Gaus-
sian, obtained by taking the second order derivatives and arranging into a matrix:

Λ =
[

wu + wt−1 −wu

−wu wu

]
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However, we are interested in predictive density P (xt|Zt−1) which is the marginal
of the joint:

P (xt|Zt−1) =
ˆ

xt−1

P (xt, xt−1|Zt−1)

Taking a marginal is really easy if you have the covariance matrix, as we can just
take the sub-matrix. The covariance matrix can be calculated analytically and is

Σ = Λ−1 =
[

1/wt−1 1/wt−1

1/wt−1 1/wt−1 + 1/wu

]
=

[
σ2

t−1 σ2
t−1

σ2
t−1 σ2

t−1 + σ2
u

]
and hence we have the very satisfying result that, for the predictive step, the vari-
ances add up. In other words, the Kalman filter, in the scalar case, is simply iterat-
ing the following two steps, starting from a prior density N (x0; µ0, σ

2
0):

1. Prediction:
P (xt|Zt−1) = N (xt;µt|t−1, σ

2
t|t−1)

µt|t−1 = µt−1 + u

σ2
t|t−1 = σ2

t−1 + σ2
u

2. Update

P (xt|Zt) = N (xt; µt, σ
2
t ) = N (xt; µt,

1
wt

)

µt =
wt|t−1µt|t−1 + wzzt

wt|t−1 + wz

wt = wt|t−1 + wz

Of course, it will be very similar for the multivariate case. starting from a prior
density N (x0; µ0, σ

2
0):

1. Prediction:
P (xt|Zt−1) = N (xt; µt|t−1, Σt|t−1)

µt|t−1 = µt−1 + u

Σt|t−1 = Σt−1 + Σu

2. Update
P (xt|Zt) = N (xt; µt, Σt) = N (xt; µt, Λ−1

t )

µt =
(
Λt|t−1 + Λz

)−1 (
Λt|t−1µt|t−1 + Λzzt

)
Λt = Λt|t−1 + Λz

If the measurement zt is not a straight measurement but a linear or non-linear func-
tion of x, there is some more subtlety.
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