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1 Common Sense Information Fusion

When we have two (scalar) measurements of equal weight, we can just average
them to form a point estimate of the (scalar) unknown x:
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When we trust z; more, we could give it more weight and form a weighted average,
with wy > ws:
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2 Bayes Law

Can we know more about x than just a point estimate? A principled way to do
sensor fusion is to use Bayes law:

P(x|z1, 22) o< P(z)L(x; 21)L(x; 22)

where P(x) is a prior density over x, and L(z; z) is the likelihood of = given the
measurement z. The likelihood is defined as

L(z;2) < P(x|2)

i.e., proportional to the conditional density P(z|z) that tells us how probable it is
to receive a measurement 2z given a value x. However, when not x but z is given,
we call the resulting function of x a likelihood function.



3 Discrete Case

If z is discrete, i.e., x € {1..K}, then both P(x) and L(z;z) are vectors, and we
can just multiply them point-wise and normalize to obtain the posterior:

Px=k)L(x = k;z1)L(x = k; 22)

Pz = k|21, 20) = SE  P(e=k)L(z = ky 21)L(z = k; 2)

Note it does not matter if z is discrete or continuous: we assume the likelihood
vectors L(x; z) can be computed given any value of z.
4 Scalar Case

If z is scalar, then things are not so simple in general: both the prior P(x) and the
likelihood functions L(x; z) can be arbitrarily complex functions, so how do we
even represent those?

4.1 Gaussian Measurement Noise

If both = and the measurements z are scalar, a very common situation is when the
measurement z is simply a corrupted version of the unknown value =z,

z2=x4+n

where n is some additive noise with some density P(n). A convenient modeling
choice is to assume the noise is Gaussian, i.e., drawn from a normal distribution,
which means the conditional density P(z|x) is also a Gaussian density on z:
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When z is given, the corresponding likelihood function is

L(z:2) = exp <”“° - Z>2
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By a happy coincidence, this is also a Gaussian, but please note that this is a very
special case: in general, when the measurement is not simply a linear function of
x, we will not be so lucky. Note above we also dropped the constant &: a likelihood
function just has to be proportional to P(z|z).



4.2 Fusing two Gaussian Measurements

Now we are in a position to apply Bayes law:

P(x|z1,22) o< P(x)L(x;21)L(w; 22)
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where we assumed the prior P(x) was non-informative. As it happens, multiplying
two Gaussians will yield a Gaussian again. This is true because a Gaussian is just
the exponential of a quadratic, and adding two quadratics is easily seen to be a

quadratic again. But what is its mean? To find that, take the negative log and
minimize:

Z = argmax P(x|z1, 22)
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Taking the derivative of the argument and setting to zero we obtain
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with wy = 1/0% and wy = 1/03. The weights here indicate the information each
measurement carries, and it is equal to the inverse variance. The information of a
measurement is equal to the inverse of its variance.

4.3 The shape of the Posterior

Information is additive: the information of the fused estimate % is equal to wy +
ws, and hence the variance of the resulting Gaussian P(x|z1, z2) (with mean ) is
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5 Multivariate Case

In the n-dimensional multivariate case, this generalizes to the information matrix,
defined as the inverse of the covariance matrix R:
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and Equation 4.1 generalizes to
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Here again, information is additive: the information matrix of the fused es-
timate & is equal to A; 4+ Ao, and hence the covariance matrix of the resulting
multivariate Gaussian is

R=(A1+Ay)7 !

6 Kalman Filter
The general Bayes filter is
P(z|Z") o< P(zi|lae) Py Z071)
= P(zt|xt)/ P(x¢|xi_1)P(xi_1]| 21
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In a Kalman filter, we assume that the likelihood, the motion model, and the poste-

rior are all Gaussian. If that is the case, the predictive density will also be Gaussian.
We see this by realizing that

P([Bt,flﬁt_l‘zt_l) = P(.’Et‘l't_l)P(.%'t_l’Zt_l)

The negative log is, for the scalar case
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Hence, the mean of the joint P(z¢, 21| Z* 1) is simply (z¢_1,2¢) = (pe—1, pre—1-+
ut—1), and the corresponding information matrix is the curvature of this 2D Gaus-
sian, obtained by taking the second order derivatives and arranging into a matrix:
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However, we are interested in predictive density P(z:|Z'~!) which is the marginal
of the joint:
P(a:t|Z“)=/ P(xy, 21| 2"1)
Tt—1
Taking a marginal is really easy if you have the covariance matrix, as we can just
take the sub-matrix. The covariance matrix can be calculated analytically and is

N Al = [ 1/we— 1/wi—1 } _ [ 01:2—1 0752—1
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and hence we have the very satisfying result that, for the predictive step, the vari-

ances add up. In other words, the Kalman filter, in the scalar case, is simply iterat-
ing the following two steps, starting from a prior density N (xo; o, O'g)l

1. Prediction:
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Of course, it will be very similar for the multivariate case. starting from a prior
density NV (zo; po, 03):
1. Prediction:
P($t|Zt_1) = N (z; Htjt—15 Zt|t—1)
Hjt—1 = pt—1 T U
Vg1 = -1 + 2y
2. Update
Pai|Z") = N (e e, Se) = N (e e, A1)
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If the measurement z; is not a straight measurement but a linear or non-linear func-
tion of x, there is some more subtlety.



