
2D Pose SLAM in GTSAM

Frank Dellaert

April 5, 2013

Robot 1

Figure 1: Pose SLAM applied to a Quadrotor Dataset, data courtesy of Nathan Michael.

PoseSLAM is a SLAM method that is especially well suited to working with odometry and laser-
range finders. For example, the ICP algorithm essentially yields a relative pose measurement ∆ξ =
(∆x,∆y, ∆θ) on the difference between two poses ξ1 = (x1, y1, θ1)T and ξ2 = (x2, y2, θ2)T . Both
odometry and matching successive laser scans will eventually accumulate so much error, however,
that the robot will no longer know where it is with any degree of accuracy. However, if you can
establish loop closures, e.g., pose constraints imposed by running ICP on laser-scans separated in
time, but in the same location, you “correct” the entire map to something that will much more closely
resemble the actual environment. Figure 1 above shows an example.

1



1 The Measurement Function
Let us first figure out what a measurement ∆ξ would be if we knew the poses ξ1 and ξ2 exactly. This
is easier to do by embedding poses in GL(3), as before, as 3 × 3 matrices:

Tw
1 =

[
R1 t1
0 1

]

Tw
2 =

[
R2 t2
0 1

]
Remember that the translation t1 = (x1, y1) and the rotation matrix R1 is given by

R1 = Rot(θ1)
∆=

[
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

]
,

and similarly for ξ2. We can now find the relative pose between ξ1 and ξ2 by matrix operations:

T 1
2 = (Tw

1 )−1
Tw

2

=
[

R1 t1
0 1

]−1 [
R2 t2
0 1

]
=

[
RT

1 −RT
1 t1

0 1

] [
R2 t2
0 1

]
=

[
RT

1 R2 RT
1 (t2 − t1)

0 1

]
Because RT

1 = Rot(−θ1) and RT
1 R2 = Rot(θ2 − θ1), we then have the following measurement

function, which predicts the relative pose:

∆̂ξ = h(ξ1, ξ2) =
[

Rot(−θ1)(t2 − t1)
θ2 − θ1

]
The predicted relative translation is just the translation between the two poses, rotated into the first
coordinate frame, because that is where we measure the relative pose.

2 SLAM as Optimization
If we have many such relative pose measurements ∆ξi, we would like to find the optimal set of poses
X = {ξj}n

j=1 compatible with the measurements. We can do this by minimizing the following
sum-of-square errors criterion, which measures the difference between the predicted and measured
relative poses:

E(X) =
1
2

∑
i

∥h(ξj1, ξj2) − ∆ξi∥2

where ∆ξi is a relative pose measurement between poses ξj1 and ξj2. This corresponds to assuming
independent and identical Gaussian measurement noise on the three components of the ∆ξ pose
measurements. Other noise models are easily accommodated.

2



3 Linearization
How do we optimize something like this? Because h(., .) is a non-linear function, the first step is to
linearize this measurement function. We can do this using a generalized Taylor expansion,

h(ξ1 ⊕ δ1, ξ2 ⊕ δ2) = h(ξ1, ξ2) ⊕ {H1δ1 + H2δ2}

where δ1δ2 ∈ R3 are pose updates, and H1 and H2 are 3 × 3 Jacobian matrices, and where we
define an update ξ ⊕ δ in the coordinate frame of ξ, i.e.:

ξ ⊕ δ =
[

t + Rot(θ)δt
θ + δθ

]
The reason we have to use the ⊕ operator is because ξ ∈ SE(2), for which vector addition is not
defined. The ⊕ operator above makes the math well behaved and in line with differential geometry,
and is equivalent to composing with a small “delta pose”:[

Rot(θ + δθ) t + Rot(θ)δt

0 1

]
=

[
Rot(θ) t

0 1

] [
Rot(δθ) δt

0 1

]
As shown in the Appendix, the Jacobians H1 and H2 can be calculated as

H1 = −
[

RT
2 R1 Rot(−π/2)RT

2 (t1 − t2)
0 1

]
(1)

H2 =
[

I 0
0 1

]
(2)

4 Solving
After linearization we have a new objective function, linear in the updates δ :

E(δ) =
1
2

∑
i

∥h(ξj1, ξj2) + Hj1δj1 + Hj2δj2 − ∆ξi∥2 =
1
2

∑
i

∥Aiδ − bi∥2 =
1
2
∥Aδ − b∥2

where the large 3m × 3n measurement Jacobian matrix A is composed out of the block rows

Ai =
[

. . . Hj1 . . . Hj2 . . .
]

and the 3m × 1 right-hand side b is composed out of the 3 × 1 prediction errors

bi = ∆ξi − h(ξj1, ξj2)

The optimal update δ is then given simply by setting the derivative of 1
2 ∥Aδ − b∥2 to zero:

AT (Aδ∗ − b) = 0(
AT A

)
δ∗ = AT b

δ∗ =
(
AT A

)−1
AT b

After solving this linear system, we can simply update our estimate by doing

ξt+1
i = ξt

i ⊕ δi

for all poses ξi, and where t indexes over iterations. We might have to iterate this process of lin-
earization/optimization several times until the solution converges. We can check this, for example,
by checking the magnitude of the updates δi. This entire process as described above is called Gauss-
Newton non-linear minimization.

3



−10 −5 0 5 10
0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

0

2

4

6

8

10

12

14

16

nz = 43

Figure 2: Pose SLAM example and corresponding Jacobian matrix A (after the last linearization).

5 GTSAM Example
Just to give you a flavor for the GTSAM (Georgia Tech Smoothing And Mapping) toolbox, I give an
example below where there are just 4 poses involved and 4 relative constraints between them. The
code below will run in MATLAB.

Create a factor graph and add three pose constraints:

graph = NonlinearFactorGraph;
graph.add(PriorFactorPose2(1, Pose2(0, 0, pi/6), noiseModel));
graph.add(BetweenFactorPose2(1, 2, Pose2(10, 0, pi/2), noiseModel));
graph.add(BetweenFactorPose2(2, 3, Pose2(10, 0, pi/2), noiseModel));
graph.add(BetweenFactorPose2(3, 4, Pose2(10, 0, pi/2), noiseModel));

Add a loop closure:

graph.add(BetweenFactorPose2(4, 1, Pose2(10, 0, pi/2), noiseModel));

Create an initial estimate:

initialEstimate = Values;
initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2 ));
initialEstimate.insert(2, Pose2(20.3, 0.1, pi/2 ));
initialEstimate.insert(3, Pose2(20.1, 20.1, pi ));
initialEstimate.insert(4, Pose2(0.1, 20.0, -pi/2));

Optimize using a Gauss-Newton non-linear optimizer:

optimizer = GaussNewtonOptimizer(graph, initialEstimate);
result = optimizer.optimizeSafely();

4



This yields the result in Figure 2, shown with the sparse Jacobian matrix A. Note that the block
structure of the matrix A is clearly visible. For this example, A has a 5 × 4 block structure

A =


H11

H21 H22

H32 H33

H43 H44

H51 H54


corresponding to 5 factors (1 prior, 3 relative pose constraints, and a loop closure) and 4 poses.

6 Practicalities
In a practical implementation we do not actually compute the inverse of AT A, because this would
convert the very sparse 3n × 3n matrix AT A into a dense matrix, its inverse

(
AT A

)−1
. Instead, all

state of the art methods employ sparse Cholesky factorization,

AT A = RT R

where R is a sparse upper-triangular matrix. The optimal update δ∗ can then be recovered using
two, very efficient, back-substitutions RT y = AT b and y = Rδ∗.

Gauss-Newton can get stuck in local minima, because the measurement functions are non-linear.
However, there are two tricks that you can apply:

1. If you have odometry, or successive scan matches from ICP, then you can simply compose
them to get a good initial estimate to start from. That will reduce the amount of computation
because we will have to iterate less, and will also reduce the risk of getting stuck in a local
minimum.

2. If you look carefully, in the 2D case the measurement function h is actually linear in the
rotations:

hθ(ξ1, ξ2) = θ2 − θ1

Hence, a common trick is to first linearly solve for the rotation angles θ. After that, we can
solve a second linear system associated with the translation measurements,

hθ(ξ1, ξ2) = Rot(−θ1)(t2 − t1)

where now Rot(−θ1) is treated as a constant matrix.

Note that in 3D (the 6 DOF case) the translation is also linear once the rotations are known, but
unfortunately the rotation part is non-linear. Still, if you have an accelerometer (which gives you
pitch and roll with respect to gravity) and a compass (which gives you yaw), you can have good
estimates for the rotations and quickly solve for them in the 3D case, as well.

5



A Jacobians
To calculate the Jacobians you express the measurement function in terms of the updates:

h(ξ1 ⊕ δ1, ξ2 ⊕ δ2) =
[

Rot(−θ1 − δθ1)(t2 + R2δt2 − t1 − R1δt1)
θ2 + δθ2 − θ1 − δθ1

]
=

[
RT

1 (I + Rot(−π/2)δθ1)(t2 + R2δt2 − t1 − R1δt1)
θ2 + δθ2 − θ1 − δθ1

]
(3)

where we made use of the approximation, valid for small δθ1,

Rot(−δθ1) =
[

cos(−δθ1) − sin(−δθ1)
sin(−δθ1) cos(−δθ1)

]
≈

[
1 δθ1

−δθ1 1

]
= I − Rot(π/2)δθ1

By equating (3) to

h(ξ1, ξ2) ⊕ δ =
[

RT
1 (t2 − t1) + RT

1 R2δt
θ2 − θ1 + δθ

]
we obtain the following identities:

RT
1 (t2 − t1) + RT

1 R2δt = RT
1 (I − Rot(π/2)δθ1)(t2 + R2δt2 − t1 − R1δt1)

θ2 − θ1 + δθ = θ2 + δθ2 − θ1 − δθ1

After some algebra, we obtain the following for δt and δθ:

δt = −RT
2 R1δt1 − Rot(−π/2)RT

2 (t1 − t2)δθ1+δt2 and δθ = δθ2 − δθ1

When we separate the two delta pose updates and write in this in matrix form this becomes

δ =
[

δt
δθ

]
= −

[
RT

2 R1 Rot(−π/2)RT
2 (t1 − t2)

0 1

] [
δt1
δθ1

]
+

[
I 0
0 1

] [
δt2
δθ2

]
and hence we recover the Jacobians (1) and (2).

Note that the above is an introductory way to explain the concept of differentials, which describe
the differential geometry of the mappings between manifolds, in this case the measurement function
h : SE(2) × SE(2) → SE(2). A similar story can be told for SE(3), with only a slight increase
of complexity. In particular, an update to a pose ξ ∈ SE(3) is now given as

ξ ⊕ δ = (R, t) ⊕
[

ω
v

]
= (R(I + [ω]×), t + Rv)

Note that in 3D the GTSAM convention is to put rotation first, then translation. The Jacobians
corresponding to the measurement function are then

H1 = −
[

RT
2 R1 0[

RT
2 (t1 − t2)

]
× RT

2 R1 RT
2 R1

]
and H2 =

[
I 0
0 I

]
Note that the rotation by Rot(−π/2) in 2D plays the same role as the cross product [.]× in 3D, and
hence the 3D and 2D Jacobians can be seen to be quite similar, modulo the change in order. The
extra RT

2 R1 factors in the first column of H1 above (corresponding to the incremental rotation ω)
arise because of the non-linear coupling of yaw, pitch, and roll, which does not occur in 2D.

6


