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Vision vs Image Processing

• In the first part of compute 
vision we learn to process 
images to make new 
images. 

• But real vision: 

: ( , ) '( , )F I x y I x y

: ( , ) good stuffF I x y 
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Fitting a model

• Want to associate a model with observed features

[Fig from Marszalek & Schmid, 2007]

For example, the model could be a line, a circle, or an arbitrary shape.
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Fitting

• Choose a parametric model to represent a set of features

• Membership criterion is not local
• Can’t tell whether a point belongs to a given model just by looking 

at that point

• Three main questions:
• What model represents this set of features best?

• Which of several model instances gets which feature?

• How many model instances are there?

• Computational complexity is important
• It is infeasible to examine every possible set of parameters and 

every possible combination of features

Source: L. Lazebnik
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Example: Line fitting

• Why fit lines?  

• Many objects characterized by presence of straight lines
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• Extra edge points (clutter), 
multiple models:

– which points go with which 
line, if any?

• Only some parts of each line 
detected, and some parts 
are missing:

– how to find a line that bridges 
missing evidence?

• Noise in measured edge 
points, orientations:

– how to detect true underlying 
parameters?

Difficulty of line fitting
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Fitting: Issues

• Noise in the measured feature locations

• Extraneous data: clutter (outliers), multiple lines

• Missing data: occlusions

Case study: Line detection

Slide: S. Lazebnik
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Typical least squares line fitting
•Data: (x1, y1), …, (xn, yn)

•Line equation: yi = m xi + b

•Find (m, b) to minimize 
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Problem with “vertical” least squares

• Not rotation-invariant

• Fails completely for vertical lines
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Total least squares

• Distance between point 
(xi, yi) and line ax+by=d 
where (a2+b2=1) is
|axi + byi – d|

• Find (a, b, d) to minimize 
the sum of squared 
perpendicular distances
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Unit normal: 
N=(a, b)
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Total least squares

•Find (a, b, d) to minimize the sum of 
squared perpendicular distances
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Solution to (UTU)N = 0, subject to ||N||2 = 1: eigenvector of UTU
associated with the smallest eigenvalue (Again SVD to least 
squares solution to homogeneous linear system UN = 0)
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Least squares as likelihood maximization

• Generative model: line points 
are corrupted by Gaussian noise 
in the direction perpendicular to 
the line
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Least squares: Non-robustness to (very) non-Gaussian 
noise

• Least squares fit to the red points:
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Least squares: Non-robustness to (very) non-Gaussian 
noise

• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers
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Robust estimators
• General approach: minimize

ri (xi, θ) – residual of ith point w.r.t. model parameters θ
ρ – robust function with scale parameter σ

   ;,ii
i

xr

The robust function ρ
behaves like squared 
distance for small 
values of the residual 
u but saturates for 
larger values of u
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Choosing the scale: Just right

The effect of the outlier is minimized
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The error value is almost the same for every
point and the fit is very poor

Choosing the scale: Too small
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Choosing the scale: Too large

Behaves much the same as least squares
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• Some points (many points) are part of the model we want.

• Some are not

• Need to find the right ones.

“Find consistent matches”
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Simplest Example

• Fitting a straight line

“Correct” 
line

“Best fit” 
line
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• Some points (many points) are part of the model we want.

• Some are not

• Need to find the right ones.

• Two well understood approches:
• Hough Transform – everyone votes for all the models they are 

comfortable with.  Well supported models are chosen.

• Random Sample Consensus (RANSAC) – a variety of models are 
proposed until one is found that is supported by a consensus of 
voters. 

“Find consistent matches”

Model Fitting: Hough and RANSACCS3630 Intro to Perception and Robotics – A. Bobick

Hough Voting

• It’s not feasible to check all combinations of features by 
fitting a model to each possible subset.

• Voting is a general technique where we let the features 
vote for all models that are compatible with it.
• Cycle through features, cast votes for model parameters.

• Look for model parameters that receive a lot of votes.

• Noise & clutter features will cast votes too, but typically 
their votes should be inconsistent with the majority of 
“good” features.

• Ok if some features not observed, as model can span 
multiple fragments.
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Fitting lines

• Given points that belong to a line, what is 
the line?

• How many lines are there?

• Which points belong to which lines?

• Hough Transform is a voting 
technique that can be used to answer all 
of these
• Main idea: 

• 1.  Record all possible lines on which each 
edge point lies.

• 2.  Look for lines that get many votes.
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Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space

• To go from image space to Hough space:

• given a set of points (x,y), find all (m,b) such that y = mx + b

x

y

m

b

m0

b0

image space Hough (parameter) space

Slide credit: Steve Seitz
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Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space
• To go from image space to Hough space:

• given a set of points (x,y), find all (m,b) such that y = mx + b
• What does a point (x0, y0) in the image space map to?

x

y

m

b

image space Hough (parameter) space

– Answer:  the solutions of b = -x0m + y0

– this is a line in Hough space

x0

y0

Slide credit: Steve Seitz
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Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space

• To go from image space to Hough space:
• given a set of points (x,y), find all (m,b) such that y = mx + b

• What does a point (x0, y0) in the image space map to?

x

y

m

b

image space Hough (parameter) space

– Answer:  the solutions of b = -x0m + y0

– this is a line in Hough space

x0

y0
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Finding lines in an image: Hough transform

What are the line parameters for the line that contains both 
(x0, y0) and (x1, y1)?
• It is the intersection of the lines b = –x0m + y0 and 

b = –x1m + y1

x

y

m

b

image space Hough (parameter) space
x0

y0

b = –x1m + y1

(x0, y0)

(x1, y1)
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Finding lines: Hough algorithm

• How can we use this to find the most likely parameters 
(m,b) for the most prominent line in the image space?

• Let each edge point in image space vote for a set of 
possible parameters in Hough space

• Accumulate votes in discrete set of bins; parameters with 
the most votes indicate line in image space.

x

y

m

b

image space Hough (parameter) space
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Polar representation for lines

: perpendicular distance 
from line to origin

: angle the perpendicular 
makes with the x-axis

Point in image space  sinusoid segment in Hough space

dyx   sincos

d



[0,0]

d


x

y

Issues with usual (m,b) parameter space: can take on infinite 
values, undefined for vertical lines.
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Hough transform algorithm
Using the polar parameterization:

Basic Hough transform algorithm
1. Initialize H[d, ]=0

2. for each edge point I[x,y] in the image

for  = 0 to 180  // some quantization; not 2pi?

// maybe negative

H[d, ] += 1

3. Find the value(s) of (d, ) where H[d, ] is maximum

4. The detected line in the image is given by

H: accumulator array (votes)

d



Time complexity (in terms of number of voting elements)?

dyx   sincos

 sincos yxd 

 sincos yxd 

Space complexity? kn (n dimensions, k bins each)
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Image space
edge coordinates

Votes



d

x

y

Bright value = high vote count
Black = no votes

Example: Hough transform for straight 
lines
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Example: Hough transform for straight lines
Circle : Square : 
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Example: Hough transform for straight lines
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Hough demo..
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Showing longest segments 
found
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Impact of noise on Hough

Image space
edge coordinates

Votes

x

y d

What difficulty does this present for an implementation?
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Image space
edge coordinates

Votes

Impact of noise on Hough

Here, everything appears to be “noise”, or random 
edge points, but we still see peaks in the vote space.
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Extensions
• Extension 1:  Use the image gradient

• same
• for each edge point I[x,y] in the image

•  = gradient at (x,y)

• H[d, ] += 1
• same
• same

• (Reduces degrees of freedom)

• Extension 2
• give more votes for stronger edges

• Extension 3
• change the sampling of (d, ) to give more/less resolution

• Extension 4
• The same procedure can be used with circles, squares, or any other shape

 sincos yxd 
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Hough transform for circles

• Circle: center (a,b) and radius r

• For a fixed radius r, unknown gradient direction

222 )()( rbyax ii 

Image space Hough space a

b
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Hough transform for circles

• For a fixed radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Image space Hough space

Intersection: 
most votes 
for center 
occur here.
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Hough transform for circles

• For an unknown radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Hough spaceImage space

b

a

r
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Hough transform for circles

• For an unknown radius r, unknown gradient direction

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Hough spaceImage space

b

a

r
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Hough transform for circles

• For an unknown radius r, known gradient direction

• Circle: center (a,b) and radius r
222 )()( rbyax ii 

Hough spaceImage space

θ

x
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Hough transform for circles

For every edge pixel (x,y) : 
For each possible radius value r:

For each possible gradient direction θ: 
%% or use estimated gradient

a = x – r cos(θ)
b = y + r sin(θ)
H[a,b,r] += 1

end
end
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Example: detecting circles with Hough

Crosshair indicates results of Hough transform,
bounding box found via motion differencing.
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Original Edges

Example: detecting circles with Hough

Votes: Penny

Note: a different Hough transform (with separate accumulators) 
was used for each circle radius (quarters vs. penny).
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Original Edges Votes: QuarterCombined detections

Coin finding sample images from: Vivek Kwatra

Example: detecting circles with Hough

Model Fitting: Hough and RANSACCS3630 Intro to Perception and Robotics – A. Bobick

Voting: practical tips

• Minimize irrelevant tokens first (take edge points with 
significant gradient magnitude)

• Choose a good grid / discretization
• Too coarse: large votes obtained when too many different lines 

correspond to a single bucket

• Too fine: miss lines because some points that are not exactly 
collinear cast votes for different buckets

• Vote for neighbors, also (smoothing in accumulator array)

• Utilize direction of edge to reduce free parameters by 1

• To read back which points voted for “winning” peaks, keep 
tags on the votes.
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Hough transform: pros and cons

• Pros
• All points are processed independently, so can cope with occlusion

• Some robustness to noise: noise points unlikely to contribute 
consistently to any single bin

• Can detect multiple instances of a model in a single pass

• Cons
• Complexity of search time increases exponentially with the number 

of model parameters 

• Non-target shapes can produce spurious peaks in parameter space

• Quantization: hard to pick a good grid size

• Complexity of search time increases exponentially with the 
number of model parameters 

Model Fitting: Hough and RANSACCS3630 Intro to Perception and Robotics – A. Bobick

• Some points (many points) are part of the model we want.

• Some are not

• Need to find the right ones.

• Two well understood approches:
• Hough Transform – everyone votes for all the models they are 

comfortable with.  Well supported models are chosen.

• Random Sample Consensus (RANSAC) – a variety of models are 
proposed until one is found that is supported by a consensus of 
voters.  Discards outliers.

“Find consistent matches”
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Discard Outliers

• “No point with d>t”

• RANSAC:
• RANdom SAmple Consensus

• Fischler & Bolles 1981

• Copes with a large proportion of outliers

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with 
Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp
381-395, 1981.
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Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using sample
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

RANSAC
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Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using sample 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example

RANSAC

Model Fitting: Hough and RANSACCS3630 Intro to Perception and Robotics – A. Bobick

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using sample 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

RANSAC



3/31/2013

28

Model Fitting: Hough and RANSACCS3630 Intro to Perception and Robotics – A. Bobick

6IN

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using the sample
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

RANSAC
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 14IN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using sample 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC
Line fitting example
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Best Line has most support

• More support -> better fit
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RANSAC for general model
• A given model has a minimal set – the smallest number of 

samples from which the model can be computed.
• Line:  2 points

• Image transformations are models.  Minimal set of s of point 
pairs/matches:
• Translation: pick one point pair
• Homography (for plane) – pick 4 point pairs
• Fundamental matrix – pick 8 point pairs (really 7 but lets not go there)

• Algorithm
• Randomly select s points (or point pairs) to form a sample
• Instantiate a model
• Get consensus set Si

• If | Si |>T, terminate and return model
• Repeat for N trials, return model with max | Si |
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Distance Threshold
• Requires noise distribution
• Location: Gaussian noise with 
• Distance: Chi-squared distribution 

• For 95% cumulative threshold:  t=3.84 2

• I.e. -> 95% prob that d<t when point is inlier

Model Fitting: Hough and RANSACCS3630 Intro to Perception and Robotics – A. Bobick

How many samples ?

• We want: at least one sample with all inliers 

• Can’t guarantee: probability p

• E.g. p =0.99
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Choosing the parameters

• Initial number of points s
• Typically minimum number needed to fit the model

• Distance threshold t
• Choose t so probability for inlier is p (e.g. 0.95) 

• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

• Number of samples N
• Choose N so that, with probability p, at least one random sample is 

free from outliers (e.g. p=0.99) (outlier ratio: e)

Source: M. Pollefeys

Model Fitting: Hough and RANSACCS3630 Intro to Perception and Robotics – A. Bobick

Calculate N

• s – number of points to compute solution

• p – probability of success

• e – proportion outliers, so %  inliers = (1-e)

• P(sample set with all inliers)=(1-e)s

• P(sample set will have at least one outlier)= 
(1-(1-e)s)

• P(all N samples have outlier)=(1-(1-e)s) N

• We want P(N samples an outlier)<1-p

• (1-(1-e)s)N < 1-p
log(1 ) / log(1 (1 ) )sN p e   



3/31/2013

32

Model Fitting: Hough and RANSACCS3630 Intro to Perception and Robotics – A. Bobick

Samples required for inliers only in a sample
• Set p=0.99 – chance of getting good sample

• s=2, =5% => N=2

• s=2, =50% => N=17

• s=4, =5% => N=3

• s=4, =50% => N=72

• s=8, =5% => N=5

• s=8, =50% => N=1177

• N = f(), not the number of points

• N increases steeply with s

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

log(1 ) / log(1 (1 ) )sN p e   
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Choosing the parameters
• Initial number of points s

• Typically minimum number needed to fit the model

• Distance threshold t
• Choose t so probability for inlier is p (e.g. 0.95) 

• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

• Number of samples N
• Choose N so that, with probability p, at least one random sample 

is free from outliers (e.g. p=0.99) (outlier ratio: e)

    sepN  11log/1log

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

Source: M. Pollefeys
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Matching features

What do we do about the “bad” matches?

Model Fitting: Hough and RANSACCS3630 Intro to Perception and Robotics – A. Bobick

RAndom SAmple Consensus (1)

Select one match, count inliers
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RAndom SAmple Consensus (2)

Select one match, count inliers
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Least squares fit

Find “average” translation vector
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RANSAC for estimating homography

• RANSAC loop:

1. Select four feature pairs (at random)

2. Compute homography H (exact)

3. Compute inliers where  SSD(pi’, H pi )< ε

4. Keep largest set of inliers

5. Re-compute least-squares H estimate on all of the 
inliers

Model Fitting: Hough and RANSACCS3630 Intro to Perception and Robotics – A. Bobick

2D transformation models

• Similarity
(translation, 
scale, rotation)

• Affine

• Projective
(homography)

Source: S. Lazebnik
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Adaptively determining the number of samples

• Inlier ratio e is often unknown a priori, so pick worst case, 
e.g. 50%, and adapt if more inliers are found, e.g. 80% 
would yield e=0.2 

• Adaptive procedure:
• N=∞, sample_count =0

• While N >sample_count
• Choose a sample and count the number of inliers

• Set e = 1 – (number of inliers)/(total number of points)

• Recompute N from e:

• Increment the sample_count by 1

    sepN  11log/1log

Source: M. Pollefeys
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RANSAC conclusions
Good
• Simple and general
• Applicable to many different problems, often works well in practice
• Robust to outliers
• Applicable for larger number of parameters than Hough transform
• Parameters are easier to choose than Hough transform

Bad
• Computational time grows quickly number of parameters 
• Not as good for getting multiple fits
• Really not good for approximate models

Common applications
• Computing a homography (e.g., image stitching)
• Estimating fundamental matrix (relating two views)
• Every problem in robot vision: find the table, the floor, the objects on the 

table…
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Generalized Hough transform

• What if want to detect arbitrary shapes defined by 
boundary points and a reference point?

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]

Image space

x a

p1

θ1

p2

θ2

At each boundary point, 
compute displacement 
vector: r = a – pi.

For a given model shape: 
store these vectors in a 
table indexed by gradient 
orientation θ.
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The End


