

CS3630 Intro to Perception and Robotics – A. Bobick	Model Fitting: Hough and RANSAC
Extension 1: Use the image gradient • same • for each edge point I[x,y] in the image • θ = gradient at (x,y) $d = x \cos \theta - y \sin \theta$ • H[d, θ] += 1 • same • same • (Reduces degrees of freedom)	$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$ $\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$
 Extension 2 give more votes for stronger edges Extension 3 change the sampling of (d, θ) to give more/less Extension 4 The same procedure can be used with circles, s 	

• Initial number of points		ter	S						
	needed			odel					
 Distance threshold t 									
 Choose t so probability for inlier is p (e.g. 0.95) 									
• Zero-mean Gaussian noise with std. dev. σ : t ² =3.84 σ ²									
 Number of samples N 									
 Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e) 									
	proportion of outliers e								
<u></u>	5%	10%	20%	25%	30%		50%		
$\begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$	2 3	3 4	5 7	6 9	7 11	11 19	17 35		
$N = \log(1-p) / \log(1-(1-e)^{s})_{4}^{3}$	3	5	9	13	17	34	72		
5	4	6	12	17	26	57	146		
6	4	7	16	24	37	97	293		
7	4	8	20	33	54	163	588		
8	5	9	26	44	78	272	1177		
Source: M. Pollefeys									

