
CS 3630 Lecture Notes on Computer Vision

Frank Dellaert

March 8, 2013

1 Image Formation
Image formation is, with P c = (Xc, Y c, Zc) expressed in the camera frame C:

x = Xc/Zc

y = Y c/Zc

Converting to pixels, see Eq. 4.40 and 4.41 in book:

u = (kuf)x + sy + u0

v = (kvf) y + v0

where ku and kv are the density of pixels, measured in pixels/m. We can instead use the correspond-
ing focal lengths αu and αv expressed in pixels:

u = αux + sy + u0

v = αvy + v0

In general we express points in the world frame W , however, hence we need

p̃ = A[I|0]Pw = A[I|0]T c
wPw

with A the calibration matrix

A =

 αu s u0

αv v0

1


and T c

w ∈ SE(3) the transformation from camera to world

T c
w = (Tw

c)−1 =
[

Rw
c twc
0 1

]−1

1

Figure 1: Motion blur resulting from taking a picture from moving car, with the camera pointing in
the direction of travel. Photo by Denim Dave, Flickr user, used under creative commons license.

2 Visual Servoing
Can we predict how things in the image will move given a certain camera motion? Certainly we
have some intuitions, e.g., look at Figure 1: When the camera moves towards the scene at high
speed, the resulting motion blur shows that the “optical flow” in the image flows from the middle of
the image outwards, and the flow is much stronger (a) for nearby objects, and (b) towards the sides
of the image. Similarly, the photo in image 2 illustrates that when we rotate the camera around the
optical axis, the flow is circular around the image center. Can we quantify this relationship between
camera motion and the apparent motion of scene points across the image plane? You bet.

If we move the camera from one world position Tw
c1 to another Tw

c2 using a twist ξ̇
∆=

[
ω
v

]
, we

have
Tw

c2 = Tw
c1 exp

(
ξ̇t

)
and the coordinates of a point P transform as

P c2 = (Tw
c2)

−1
Pw

=
(
Tw

c1 exp
(
ξ̇t

))−1

Pw

= exp
(
−ξ̇t

)
(Tw

c1)
−1

Pw

= exp
(
−ξ̇t

)
P c1

2

Figure 2: Motion blur resulting from roll (rotation around the optical axis). Photo by Natesh Ra-
masamy, Flickr user, used under creative commons license.

For small t, e.g. δt, we have

exp
(
−ξ̇δt

)
≈ I −


0 −ωz ωy vx

ωz 0 −ωx vy

−ωy ωx 0 vz

0 0 0 0

 δt

and the point will transform as
Xc2

Y c2

Zc2

1

 =


1 ωzδt −ωyδt −vxδt

−ωzδt 1 ωxδt −vyδt
ωyδt −ωxδt 1 −vzδt

0 0 0 1




Xc1

Y c1

Zc1

1


from which we can compute  Ẋ

Ẏ

Ż

 =

 ωzY − ωyZ − vx

ωxZ − ωzX − vy

ωyX − ωxY − vz


where I omitted the coordinate frame superscripts for simplicity, but this is in the camera frame. The
linear velocity part is easy to understand: if we move the camera with velocity v, a world point will
appear to move with the opposite velocity in the camera frame. The rotation is analogous, but the
motion of the point is bigger the further the point is from the camera origin.

3

We can then ask what happens to the projection (x, y) of that point? By applying the normal
rules of differentiation, we have

ẋ =
∂X/Z

∂t
=

ẊZ − XŻ

Z2
=

1
Z2

Z(ωzY − ωyZ − vx) − 1
Z2

X(ωyX − ωxY − vz)

= (xy)ωx − (1 + x2)ωy + yωz − 1
Z

vx +
x

Z
vz

A similar calculation for y yields

ẏ = (1 + y2)ωx − (xy)ωy − xωz −
1
Z

vy +
y

Z
vz

Hence, for each point, we have the following linear mapping between spatial twist ξ̇ and the change
in projection:

ṗ =
[

ẋ
ẏ

]
=

[
xy −(1 + x2) y −1/Z x/Z

(1 + y2) −xy −x −1/Z y/Z

] [
ω
v

]
= J(x, y, Z)ξ̇

where J(x, y, Z) is a Jacobian that depends on both the position (x, y) of the point in the image,
and on the depth Z of the point.

Figure 3: Angular velocity part of the Jacobian, evaluated at a regular grid.

4

In Figure 3 the angular velocity part of the Jacobian is visualized as red, green, and blue vectors
for rotation around the camera’s X,Y, and Z axes, respectively. I evaluated the Jacobian on a regular
grid in the image, and it is clear that the Jacobian depends on the location in the image. To get some
intuition, look at the red vectors only: in response to a CCW rotation around X (camera pitches up),
all the projected points in the image move down. Try it with a camera, and note that the amount of
movement in response to a pure rotation does not depend on the distance to the scene points.
A CW rotation around Y corresponds to camera yaw to the right, and projections move opposite,
to the left. Finally a CCW rotation around Z corresponds to clockwise camera roll, and projections
move counter-clock-wise in response. Note that the amount of movement is zero at the center and
increases towards the sides of the image, but again, does not depend on depth.

Figure 4: Linear velocity part of the Jacobian, evaluated at a regular grid, using Z = 1.

The linear velocity part of the Jacobian is shown in Figure 4. Again, the red vectors correspond
to a positive velocity of the camera along its X-axis, and we see that all points in the image move in
the opposite direction. The same holds for a positive velocity in Y, which is down, and hence green
vectors point up. The blue vectors are the most interesting: in response to a forward motion of the
camera, all points projected in the camera will move outwards from the center!

5

