CS 3630 Frank Dellaert, Spring 14

Dense Stereo Some Slides by Forsyth & Ponce, Jim Rehg, **Sing Bing Kang**

Etymology

Stereo comes from the Greek word for solid (στερεό), and the term can be applied to any system using more than one channel

Effect of Moving Camera ?

- Given a point x in image L, where can x' appear in image R?
- Assume camera R is *exactly* to the right of camera L (stereo rig)

Image R

Effect of Moving Camera

- As camera is shifted (viewpoint changed):
 - 3D points are projected to different 2D locations
 - Amount of shift in projected 2D location depends on depth
- 2D shifts=Parallax

Demo

R.I.G ftstplanaieggee

View Interpolation

Basic Idea of Stereo

Triangulate on two images of the same point to recover depth.

- Feature matching across views

Matching correlation windows across scan lines

Outline

- Pinhole camera model
- Basic stereo Equations
- Stereo Correspondence

Pinhole Camera Model

In actual image plane, scene appears inverted. In virtual image, scene appears right side up. For expediency, use virtual image for analysis.

Pinhole Camera Model

3D scene point P is projected to a 3D point Q in the virtual image plane

By simply rescaling:

$$Q = \left(f\frac{X}{Z}, f\frac{Y}{Z}, f\right)$$

Hence, the 2D coordinates in the virtual image is given by

$$(u,v) = \left(f\frac{X}{Z}, f\frac{Y}{Z}\right)$$

Note: image center is (0, 0)

Stereo Correspondence

- Search over disparity to find correspondences
- Range of disparities can be large

Stereo Vision

$$Z(x,y) = \frac{fB}{d(x,y)}$$

Z(x, y) is depth at pixel (x, y)d(x, y) is disparity

Matching correlation windows across scan lines

Correspondence Using Window-based Correlation

Left

Right

Sum of Squared (Intensity) Differences

Right

 w_L and w_R are corresponding *m* by *m* windows of pixels. We define the window function :

$$W_m(x,y) = \{u, v \mid x - \frac{m}{2} \le u \le x + \frac{m}{2}, y - \frac{m}{2} \le v \le y + \frac{m}{2}\}$$

The SSD cost measures the intensity difference as a function of disparity:

$$C_{r}(x,y,d) = \sum_{(u,v)\in W_{m}(x,y)} [I_{L}(u,v) - I_{R}(u-d,v)]^{2}$$

Correspondence Using Correlation

Left

Images courtesy of Point Grey Research

Disparity Map

Two major roadblocks

- Texture-less regions create ambiguities
- Occlusions result in missing data

Occluded regions

Textureless regions

Edge-based Stereo

• Another approach is to match *edges* rather than windows of pixels:

- Which method is better?
 - Edges tend to fail in dense texture (outdoors)
 - Correlation tends to fail in smooth featureless areas
 - Sparse correspondences

Segmentation-based Stereo

Hai Tao and Harpreet W. Sawhney

Another Example

Bottom Line: Stereo is Still Unresolved

- Depth discontinuities
- Lack of texture (depth ambiguity)
- Non-rigid effects (highlights, reflection, translucency)

Kinect Hardware

See the IR-dots emitted by KINECT

http://www.youtube.com/watch?v=-gbzXjdHfJA

http://www.youtube.com/watch?v=dTKINGSH9Po&feature=related

Source: http://www.futurepicture.org/?p=97

Source: http://www.futurepicture.org/?p=97

KinectFusion

- <u>https://www.youtube.com/watch?</u>
 <u>v=quGhaggn3cQ</u>
- <u>http://people.csail.mit.edu/kaess/</u> projects.html#kintinuous

From 2 views to >2 views

- More pixels voting for the right depth
- Statistically more robust
- However, occlusion reasoning is more complicated, since we have to account for partial occlusion:
 - Which subset of cameras sees the same 3D point?

