IMAGE PROCESSING CS 3630 Introduction to Robotics and Perception Frank Dellaert

FILTERING

- Noise removal
- Edge detection
- Texture description
- Multi-scale algorithms
- Feature detection
- Matched filters

WHAT IS IMAGE FILTERING?

Modify the pixels in an image based on some function of a local neighborhood of the pixels

LINEAR FILTERING

- Linear case is simplest and most useful
 - Replace each pixel with a linear combination of its neighbors.
- Prescription for linear combination is called the convolution kernel.

10	5	3	
4	5	1	*
1	1	7	

0	0	0	
0	0.5	0	-
0	1.0	0.5	

kernel

FILTERING EXAMPLES

FILTERING EXAMPLES: IDENTITY

original

Filtered (no change)

FILTERING EXAMPLES

original

coefficient 0.3 Pixel⁰ offset

FILTERING EXAMPLES: BLUR

original

coefficient 0.3 0 Pixel offset

Blurred (filter applied in both dimensions).

FILTERING EXAMPLES

FILTERING EXAMPLES: SHIFT

original

shifted

CONVOLUTION

$$R_{ij} = \sum_{u,v} H_{i-u,j-v} F_{uv}$$

- Represent these weights as an image, H
- H is usually called the **kernel**
- Operation is called convolution

EXAMPLE: SMOOTHING BY AVERAGING

SMOOTHING WITH A GAUSSIAN

- Averaging does not model defocussed lens well
- impulse response should be fuzzy blob

AN ISOTROPIC GAUSSIAN

• The picture shows a smoothing kernel proportional to

$$\exp\left(-\left(\frac{x^2+y^2}{2\sigma^2}\right)\right)$$

• reasonable model of a circularly symmetric blob

SMOOTHING WITH A GAUSSIAN

FILTER RESPONSES ARE CORRELATED

- Correlated over scales similar to scale of filter
- Filtered noise is sometimes useful
 - looks like some natural textures, can be used to simulate fire, etc.

sigma=1

sigma=16

The effects of smoothing

EDGE DETECTION

• Sobel Kernel (Corke Chapter 12)

Magnitude & direction

DOG VS. CANNY

Canny: smart post-processing Derivative of Gaussian operator, then take magnitude of edge magnitude 400 600 ∟ 400 $\nabla \mathbf{I} = \mathbf{D} \otimes (\mathbf{G}(\sigma) \otimes I) = (\mathbf{D} \otimes \mathbf{G}(\sigma)) \otimes \mathbf{I}$ DoG $\mathbf{G}_u(u,v) = -\frac{u}{2\pi\sigma^2}e^{-\frac{u}{2\pi\sigma^2}}e^{-\frac{u}{2}}e^{-\frac{u}{2}}}e^{-\frac{u}{2}}e$ >> Iu = iconv(castle, -kdgauss(2)); >> Iv = iconv(castle, -kdgauss(2)'); >> m = sqrt(Iu.^2 + Iv.^2);