
A Summations

When an algorithm contains an iterative control construct such as a while or for
loop, we can express its running time as the sum of the times spent on each exe-
cution of the body of the loop. For example, we found in Section 2.2 that the j th
iteration of insertion sort took time proportional to j in the worst case. By adding
up the time spent on each iteration, we obtained the summation (or series)

nX

j D2

j :

When we evaluated this summation, we attained a bound of ‚.n2/ on the worst-
case running time of the algorithm. This example illustrates why you should know
how to manipulate and bound summations.

Section A.1 lists several basic formulas involving summations. Section A.2 of-
fers useful techniques for bounding summations. We present the formulas in Sec-
tion A.1 without proof, though proofs for some of them appear in Section A.2 to
illustrate the methods of that section. You can find most of the other proofs in any
calculus text.

A.1 Summation formulas and properties

Given a sequence a1; a2; : : : ; an of numbers, where n is a nonnegative integer, we
can write the finite sum a1 C a2 C ! ! !C an as

nX

kD1

ak :

If n D 0, the value of the summation is defined to be 0. The value of a finite series
is always well defined, and we can add its terms in any order.

Given an infinite sequence a1; a2; : : : of numbers, we can write the infinite sum
a1 C a2 C ! ! ! as
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1X

kD1

ak ;

which we interpret to mean

lim
n!1

nX

kD1

ak :

If the limit does not exist, the series diverges; otherwise, it converges. The terms
of a convergent series cannot always be added in any order. We can, however,
rearrange the terms of an absolutely convergent series, that is, a series P1

kD1 ak

for which the series P1
kD1 jakj also converges.

Linearity
For any real number c and any finite sequences a1; a2; : : : ; an and b1; b2; : : : ; bn,

nX

kD1

.cak C bk/ D c

nX

kD1

ak C
nX

kD1

bk :

The linearity property also applies to infinite convergent series.
We can exploit the linearity property to manipulate summations incorporating

asymptotic notation. For example,
nX

kD1

‚.f .k// D ‚

 
nX

kD1

f .k/

!

:

In this equation, the ‚-notation on the left-hand side applies to the variable k, but
on the right-hand side, it applies to n. We can also apply such manipulations to
infinite convergent series.

Arithmetic series
The summation

nX

kD1

k D 1C 2C ! ! !C n ;

is an arithmetic series and has the value
nX

kD1

k D
1

2
n.nC 1/ (A.1)

D ‚.n2/ : (A.2)
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Sums of squares and cubes
We have the following summations of squares and cubes:

nX

kD0

k2 D
n.nC 1/.2nC 1/

6
; (A.3)

nX

kD0

k3 D
n2.nC 1/2

4
: (A.4)

Geometric series
For real x ¤ 1, the summation

nX

kD0

xk D 1C x C x2 C ! ! !C xn

is a geometric or exponential series and has the value
nX

kD0

xk D
xnC1 " 1

x " 1
: (A.5)

When the summation is infinite and jxj < 1, we have the infinite decreasing geo-
metric series
1X

kD0

xk D
1

1 " x
: (A.6)

Harmonic series
For positive integers n, the nth harmonic number is
Hn D 1C

1

2
C

1

3
C

1

4
C ! ! !C

1

n

D
nX

kD1

1

k

D ln nCO.1/ : (A.7)
(We shall prove a related bound in Section A.2.)

Integrating and differentiating series
By integrating or differentiating the formulas above, additional formulas arise. For
example, by differentiating both sides of the infinite geometric series (A.6) and
multiplying by x, we get
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1X

kD0

kxk D
x

.1 " x/2
(A.8)

for jxj < 1.

Telescoping series
For any sequence a0; a1; : : : ; an,

nX

kD1

.ak " ak!1/ D an " a0 ; (A.9)

since each of the terms a1; a2; : : : ; an!1 is added in exactly once and subtracted out
exactly once. We say that the sum telescopes. Similarly,
n!1X

kD0

.ak " akC1/ D a0 " an :

As an example of a telescoping sum, consider the series
n!1X

kD1

1

k.k C 1/
:

Since we can rewrite each term as
1

k.k C 1/
D

1

k
"

1

k C 1
;

we get
n!1X

kD1

1

k.k C 1/
D

n!1X

kD1

!
1

k
"

1

k C 1

"

D 1 "
1

n
:

Products
We can write the finite product a1a2 ! ! ! an as

nY

kD1

ak :

If n D 0, the value of the product is defined to be 1. We can convert a formula with
a product to a formula with a summation by using the identity

lg
 

nY

kD1

ak

!

D
nX

kD1

lg ak :
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Exercises
A.1-1
Find a simple formula for Pn

kD1.2k " 1/.
A.1-2 ?
Show that Pn

kD1 1=.2k " 1/ D ln.
p

n/ C O.1/ by manipulating the harmonic
series.
A.1-3
Show that P1

kD0 k2xk D x.1C x/=.1 " x/3 for 0 < jxj < 1.
A.1-4 ?
Show that P1

kD0.k " 1/=2k D 0.
A.1-5 ?
Evaluate the sum P1

kD1.2k C 1/x2k.
A.1-6
Prove that Pn

kD1 O.fk.i// D O
#Pn

kD1 fk.i/
$ by using the linearity property of

summations.
A.1-7
Evaluate the product Qn

kD1 2 ! 4k.
A.1-8 ?
Evaluate the product Qn

kD2.1 " 1=k2/.

A.2 Bounding summations

We have many techniques at our disposal for bounding the summations that de-
scribe the running times of algorithms. Here are some of the most frequently used
methods.

Mathematical induction
The most basic way to evaluate a series is to use mathematical induction. As an
example, let us prove that the arithmetic series Pn

kD1 k evaluates to 1
2
n.nC1/. We

can easily verify this assertion for n D 1. We make the inductive assumption that
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it holds for n, and we prove that it holds for nC 1. We have
nC1X

kD1

k D
nX

kD1

k C .nC 1/

D
1

2
n.nC 1/C .nC 1/

D
1

2
.nC 1/.nC 2/ :

You don’t always need to guess the exact value of a summation in order to use
mathematical induction. Instead, you can use induction to prove a bound on a sum-
mation. As an example, let us prove that the geometric series Pn

kD0 3k is O.3n/.
More specifically, let us prove that Pn

kD0 3k # c3n for some constant c. For the
initial condition n D 0, we have P0

kD0 3k D 1 # c ! 1 as long as c $ 1. Assuming
that the bound holds for n, let us prove that it holds for nC 1. We have
nC1X

kD0

3k D
nX

kD0

3k C 3nC1

# c3n C 3nC1 (by the inductive hypothesis)
D

!
1

3
C

1

c

"
c3nC1

# c3nC1

as long as .1=3 C 1=c/ # 1 or, equivalently, c $ 3=2. Thus, Pn
kD0 3k D O.3n/,

as we wished to show.
We have to be careful when we use asymptotic notation to prove bounds by in-

duction. Consider the following fallacious proof that Pn
kD1 k D O.n/. Certainly,P1

kD1 k D O.1/. Assuming that the bound holds for n, we now prove it for nC 1:
nC1X

kD1

k D
nX

kD1

k C .nC 1/

D O.n/C .nC 1/ % wrong!!
D O.nC 1/ :

The bug in the argument is that the “constant” hidden by the “big-oh” grows with n
and thus is not constant. We have not shown that the same constant works for all n.

Bounding the terms
We can sometimes obtain a good upper bound on a series by bounding each term
of the series, and it often suffices to use the largest term to bound the others. For
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example, a quick upper bound on the arithmetic series (A.1) is
nX

kD1

k #
nX

kD1

n

D n2 :

In general, for a series Pn
kD1 ak, if we let amax D max1"k"n ak, then

nX

kD1

ak # n ! amax :

The technique of bounding each term in a series by the largest term is a weak
method when the series can in fact be bounded by a geometric series. Given the
series Pn

kD0 ak, suppose that akC1=ak # r for all k $ 0, where 0 < r < 1 is a
constant. We can bound the sum by an infinite decreasing geometric series, since
ak # a0rk, and thus

nX

kD0

ak #
1X

kD0

a0rk

D a0

1X

kD0

rk

D a0

1

1 " r
:

We can apply this method to bound the summation P1
kD1.k=3k/. In order to

start the summation at k D 0, we rewrite it as P1
kD0..k C 1/=3kC1/. The first

term (a0) is 1=3, and the ratio (r) of consecutive terms is
.k C 2/=3kC2

.k C 1/=3kC1
D

1

3
!

k C 2

k C 1

#
2

3

for all k $ 0. Thus, we have
1X

kD1

k

3k
D

1X

kD0

k C 1

3kC1

#
1

3
!

1

1 " 2=3

D 1 :
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A common bug in applying this method is to show that the ratio of consecu-
tive terms is less than 1 and then to assume that the summation is bounded by a
geometric series. An example is the infinite harmonic series, which diverges since
1X

kD1

1

k
D lim

n!1

nX

kD1

1

k

D lim
n!1

‚.lg n/

D 1 :

The ratio of the .kC1/st and kth terms in this series is k=.kC1/ < 1, but the series
is not bounded by a decreasing geometric series. To bound a series by a geometric
series, we must show that there is an r < 1, which is a constant, such that the ratio
of all pairs of consecutive terms never exceeds r . In the harmonic series, no such r
exists because the ratio becomes arbitrarily close to 1.

Splitting summations
One way to obtain bounds on a difficult summation is to express the series as the
sum of two or more series by partitioning the range of the index and then to bound
each of the resulting series. For example, suppose we try to find a lower bound
on the arithmetic series Pn

kD1 k, which we have already seen has an upper bound
of n2. We might attempt to bound each term in the summation by the smallest term,
but since that term is 1, we get a lower bound of n for the summation—far off from
our upper bound of n2.

We can obtain a better lower bound by first splitting the summation. Assume for
convenience that n is even. We have

nX

kD1

k D
n=2X

kD1

k C
nX

kDn=2C1

k

$
n=2X

kD1

0C
nX

kDn=2C1

.n=2/

D .n=2/2

D !.n2/ ;

which is an asymptotically tight bound, since Pn
kD1 k D O.n2/.

For a summation arising from the analysis of an algorithm, we can often split
the summation and ignore a constant number of the initial terms. Generally, this
technique applies when each term ak in a summationPn

kD0 ak is independent of n.
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Then for any constant k0 > 0, we can write
nX

kD0

ak D
k0!1X

kD0

ak C
nX

kDk0

ak

D ‚.1/C
nX

kDk0

ak ;

since the initial terms of the summation are all constant and there are a constant
number of them. We can then use other methods to bound Pn

kDk0
ak. This tech-

nique applies to infinite summations as well. For example, to find an asymptotic
upper bound on
1X

kD0

k2

2k
;

we observe that the ratio of consecutive terms is
.k C 1/2=2kC1

k2=2k
D

.k C 1/2

2k2

#
8

9

if k $ 3. Thus, the summation can be split into
1X

kD0

k2

2k
D

2X

kD0

k2

2k
C

1X

kD3

k2

2k

#
2X

kD0

k2

2k
C

9

8

1X

kD0

!
8

9

"k

D O.1/ ;

since the first summation has a constant number of terms and the second summation
is a decreasing geometric series.

The technique of splitting summations can help us determine asymptotic bounds
in much more difficult situations. For example, we can obtain a bound of O.lg n/
on the harmonic series (A.7):

Hn D
nX

kD1

1

k
:

We do so by splitting the range 1 to n into blg nc C 1 pieces and upper-bounding
the contribution of each piece by 1. For i D 0; 1; : : : ; blg nc, the i th piece consists
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of the terms starting at 1=2i and going up to but not including 1=2iC1. The last
piece might contain terms not in the original harmonic series, and thus we have

nX

kD1

1

k
#

blg ncX

iD0

2i !1X

j D0

1

2i C j

#
blg ncX

iD0

2i !1X

j D0

1

2i

D
blg ncX

iD0

1

# lg nC 1 : (A.10)

Approximation by integrals
When a summation has the form Pn

kDm f .k/, where f .k/ is a monotonically in-
creasing function, we can approximate it by integrals:
Z n

m!1

f .x/ dx #
nX

kDm

f .k/ #
Z nC1

m

f .x/ dx : (A.11)

Figure A.1 justifies this approximation. The summation is represented as the area
of the rectangles in the figure, and the integral is the shaded region under the curve.
When f .k/ is a monotonically decreasing function, we can use a similar method
to provide the bounds
Z nC1

m

f .x/ dx #
nX

kDm

f .k/ #
Z n

m!1

f .x/ dx : (A.12)

The integral approximation (A.12) gives a tight estimate for the nth harmonic
number. For a lower bound, we obtain

nX

kD1

1

k
$

Z nC1

1

dx

x

D ln.nC 1/ : (A.13)
For the upper bound, we derive the inequality

nX

kD2

1

k
#

Z n

1

dx

x

D ln n ;
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n+1n–1n–2m+2mm –1

f (m)

f (m+1)

f (m+2)

f (n–2)

f (n–1)

f (n)
f (x)

x… … n

… …

(a)
m+1

n+1n–1n–2m+2mm –1

f (m)

f (m+1)

f (m+2)

f (n–2)

f (n–1)

f (n)

f (x)

x… … n

… …

(b)
m+1

Figure A.1 Approximation of Pn
kDm f .k/ by integrals. The area of each rectangle is shown

within the rectangle, and the total rectangle area represents the value of the summation. The in-
tegral is represented by the shaded area under the curve. By comparing areas in (a), we getR n

m!1 f .x/ dx #
Pn

kDm f .k/, and then by shifting the rectangles one unit to the right, we get
Pn

kDm f .k/ #
R nC1

m f .x/ dx in (b).
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which yields the bound
nX

kD1

1

k
# ln nC 1 : (A.14)

Exercises
A.2-1
Show that Pn

kD1 1=k2 is bounded above by a constant.
A.2-2
Find an asymptotic upper bound on the summation
blg ncX

kD0

˙
n=2k

%
:

A.2-3
Show that the nth harmonic number is !.lg n/ by splitting the summation.
A.2-4
Approximate Pn

kD1 k3 with an integral.
A.2-5
Why didn’t we use the integral approximation (A.12) directly on Pn

kD1 1=k to
obtain an upper bound on the nth harmonic number?

Problems

A-1 Bounding summations
Give asymptotically tight bounds on the following summations. Assume that r $ 0
and s $ 0 are constants.

a.
nX

kD1

kr .

b.
nX

kD1

lgs k.
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c.
nX

kD1

kr lgs k.

Appendix notes

Knuth [209] provides an excellent reference for the material presented here. You
can find basic properties of series in any good calculus book, such as Apostol [18]
or Thomas et al. [334].


