Lecture 7
Gaussian Elimination with Pivoting

David Semeraro

University of Illinois at Urbana-Champaign

February 11, 2014
Naive Gaussian Elimination Algorithm

- Forward Elimination
- + Backward substitution
- = Naive Gaussian Elimination
Goals for today...

- Identify *why* our basic GE method is “naive”: identify where the errors come from?
 - division by zero, near-zero
- Propose strategies to eliminate the errors
 - partial pivoting, complete pivoting, scaled partial pivoting
- Investigate the cost: does pivoting cost too much?
- Try to answer “How *accurately* can we solve a system with or without pivoting?”
 - Analysis tools: norms, condition number, ...
Why is our basic GE “naive”?

Example

\[A = \begin{bmatrix} 0 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \]

Example

\[A = \begin{bmatrix} 1e-10 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \]
The Need for Pivoting

Solve:

\[A = \begin{bmatrix} 2 & 4 & -2 & -2 \\ 1 & 2 & 4 & -3 \\ -3 & -3 & 8 & -2 \\ -1 & 1 & 6 & -3 \end{bmatrix} \quad b = \begin{bmatrix} -4 \\ 5 \\ 7 \\ 7 \end{bmatrix} \]

Note that there is nothing "wrong" with this system. \(A \) is full rank. The solution exists and is unique.

Form the augmented system.

\[\begin{bmatrix} 2 & 4 & -2 & -2 & | & -4 \\ 1 & 2 & 4 & -3 & | & 5 \\ -3 & -3 & 8 & -2 & | & 7 \\ -1 & 1 & 6 & -3 & | & 7 \end{bmatrix} \]
Subtract $1/2$ times the first row from the second row, add $3/2$ times the first row to the third row, add $1/2$ times the first row to the fourth row. The result of these operations is:

\[
\begin{array}{cccc|c}
2 & 4 & -2 & -2 & -4 \\
0 & 0 & 5 & -2 & 7 \\
0 & 3 & 5 & -5 & 1 \\
0 & 3 & 5 & -4 & 5 \\
\end{array}
\]

The next stage of Gaussian elimination will not work because there is a zero in the pivot location, \tilde{a}_{22}.
The Need for Pivoting

Swap second and fourth rows of the augmented matrix.

\[
\begin{bmatrix}
2 & 4 & -2 & -2 & -4 \\
0 & 3 & 5 & -4 & 5 \\
0 & 3 & 5 & -5 & 1 \\
0 & 0 & 5 & -2 & 7 \\
\end{bmatrix}
\]

Continue with elimination: subtract (1 times) row 2 from row 3.

\[
\begin{bmatrix}
2 & 4 & -2 & -2 & -4 \\
0 & 3 & 5 & -4 & 5 \\
0 & 0 & 0 & -1 & -4 \\
0 & 0 & 5 & -2 & 7 \\
\end{bmatrix}
\]
The Need for Pivoting

Another zero has appear in the pivot position. Swap row 3 and row 4.

\[
\begin{bmatrix}
2 & 4 & -2 & -2 & -4 \\
0 & 3 & 5 & -4 & 5 \\
0 & 0 & 5 & -2 & 7 \\
0 & 0 & 0 & -1 & -4 \\
\end{bmatrix}
\]

The augmented system is now ready for backward substitution.
Example

With Naive GE,

\[
\begin{bmatrix}
\epsilon & 1 \\
1 & \frac{1}{\epsilon}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= \begin{bmatrix} 1 \\ 2 \end{bmatrix}
\]

Solving for \(x_1 \) and \(x_2 \) we get

\[
x_2 = \frac{2 - 1/\epsilon}{1 - 1/\epsilon}
\]
\[
x_1 = \frac{1 - x_2}{\epsilon}
\]

For \(\epsilon \approx 10^{-20}, \ x_1 \approx 0, \ x_2 \approx 1 \)
Partial Pivoting: Exchange only rows

- Exchanging rows does not affect the order of the x_i
- For increased numerical stability, make sure the largest possible pivot element is used. This requires searching in the partial column below the pivot element.
- Partial pivoting is usually sufficient.
Partial Pivoting

To avoid division by zero, swap the row having the zero pivot with one of the rows below it.

To minimize the effect of roundoff, always choose the row that puts the largest pivot element on the diagonal, i.e., find \(i_p \) such that \(|a_{i_p,i}| = \max(|a_{k,i}|) \) for \(k = i, \ldots, n \).
Partial Pivoting: Usually sufficient, but not always

- Partial pivoting is usually sufficient
- Consider
 \[
 \begin{bmatrix}
 2 & 2c & 2c \\
 1 & 1 & 2 \\
 \end{bmatrix}
 \]

 With Partial Pivoting, the first row is the pivot row:
 \[
 \begin{bmatrix}
 2 & 2c & 2c \\
 0 & 1 - c & 2 - c \\
 \end{bmatrix}
 \]
 and for large \(c \):
 \[
 \begin{bmatrix}
 2 & 2c & 2c \\
 0 & -c & -c \\
 \end{bmatrix}
 \]
 so that \(y = 1 \) and \(x = 0 \). (exact is \(x = y = 1 \))
- The pivot is selected as the largest in the column, but it should be the largest relative to the full submatrix.
More Pivoting Strategies

Full (or Complete) Pivoting: Exchange *both* rows and columns

- Column exchange requires changing the order of the x_i
- For increased numerical stability, make sure the largest possible pivot element is used. This requires searching in the pivot row, *and* in all rows below the pivot row, starting the pivot column.
- Full pivoting is less susceptible to roundoff, but the increase in stability comes at a cost of more complex programming (not a problem if you use a library routine) and an increase in work associated with searching and data movement.
Full Pivoting

Rows completed in forward elimination.

Row with zero pivot element

Rows to search for a more favorable pivot element.

Columns to search for a more favorable pivot element.
Scaled Partial Pivoting

We simulate full pivoting by using a scale with partial pivoting.

- pick pivot element as the largest \textit{relative} entry in the column (relative to the other entries in the row)
- do not swap, just keep track of the order of the pivot rows
- call this vector $\ell = [\ell_1, \ldots, \ell_n]$.

SPP Process

1. Determine a scale vector \(\mathbf{s} \). For each row
 \[
 s_i = \max_{1 \leq j \leq n} |a_{ij}|
 \]

2. Initialize \(\ell = [\ell_1, \ldots, \ell_n] = [1, \ldots, n] \).

3. Select row \(j \) to be the row with the largest ratio
 \[
 \frac{|a_{\ell_i,1}|}{s_{\ell_i}} \quad 1 \leq i \leq n
 \]

4. Swap \(\ell_j \) with \(\ell_1 \) in \(\ell \).

5. Now we need \(n - 1 \) multipliers for the first column:
 \[
 m_1 = \frac{a_{\ell_i,1}}{a_{\ell_1,1}}
 \]

6. So the index to the rows are being swapped, NOT the actual row vectors which would be expensive.

7. Finally use the multiplier \(m_1 \) times row \(\ell_1 \) to subtract from rows \(\ell_i \) for \(2 \leq i \leq n \).
For the second column in forward elimination, we select row \(j \) that yields the largest ratio of
\[
\frac{|a_{\ell,i,2}|}{s_{\ell_i}} \quad 2 \leq i \leq n
\]

2. swap \(\ell_j \) with \(\ell_2 \) in \(\ell \)

3. Now we need \(n - 2 \) multipliers for the second column:
\[
m_2 = \frac{a_{\ell,i,2}}{a_{\ell_2,2}}
\]

4. finally use the multiplier \(m_2 \) times row \(\ell_2 \) to subtract from rows \(\ell_i \) for \(3 \leq i \leq n \)

5. the process continues for row \(k \)

6. note: scale factors are *not* updated
An Example

Consider

\[
\begin{bmatrix}
3 & 4 & 3 \\
1 & 5 & -1 \\
6 & 3 & 7 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{bmatrix}
=
\begin{bmatrix}
10 \\
7 \\
15 \\
\end{bmatrix}
\]
1. The first equation corresponds to the last index ℓ_n:

$$a_{\ell_n n} x_n = b_{\ell_n} \Rightarrow x_n = \frac{b_{\ell_n}}{a_{\ell_n n}}$$

2. The second equation corresponds to the second to last index ℓ_{n-1}:

$$x_{n-1} = \frac{1}{a_{\ell_{n-1} n-1}} \left(b_{\ell_{n-1}} - a_{\ell_{n-1} n} x_n \right)$$
Listing 1: (forward) GE with SPP

```
1 Initialize ℓ = [1, ..., n]
2 Set s to be the max |a_ij| in each row
3 for k = 1 to n
4     rmax = 0
5     for i = k to n
6         r = |a_{ℓi,k}/s_{ℓi}|
7         if (r > rmax)
8             rmax = r
9             j = i
10     end
11     swap ℓ_j and ℓ_k
12     for i = k + 1 to n
13         xmult = a_{ℓi,k}/a_{ℓk,k}
14         a_{ℓik} = xmult
15         for j = k + 1 to n
16             a_{ℓij} = a_{ℓij} - xmult \cdot a_{ℓkj}
17         end
18     end
19 end
```

See Gauss algorithm on page 89 of NMC7
The Algorithms

Note: the multipliers are stored in the location $a_{\ell_i,k}$ in the text

Listing 2: (back solve) GE with SPP

```
for k = 1 to n - 1
  for i = k + 1 to n
    $b_{\ell_i} = b_{\ell_i} - a_{\ell_i,k}b_{\ell_k}$
  end
end

x_n = b_{\ell_n}/a_{\ell_n,n}

for i = n - 1 down to 1
  sum = $b_{\ell_i}$
  for j = i + 1 to n
    sum = sum - $a_{\ell_i,j}x_j$
  end
  x_i = sum/a_{\ell_i,i}
end
```

See Gauss algorithm on page 89 of NMC7
Geometric Interpretation of Singularity

Consider a 2×2 system describing two lines that intersect

$$y = -2x + 6$$
$$y = \frac{1}{2}x + 1$$

The matrix form of this equation is

$$\begin{bmatrix} 2 & 1 \\ -1/2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$$

The equations for two parallel but not intersecting lines are

$$\begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 5 \end{bmatrix}$$

Here the coefficient matrix is singular ($\text{rank}(A) = 1$), and the system is inconsistent.
The equations for two \textbf{parallel} and \textbf{coincident} lines are

\[
\begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}
\]

The equations for two \textbf{nearly parallel} lines are

\[
\begin{bmatrix} 2 & 1 \\ 2 + \delta & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 + \delta \end{bmatrix}
\]
Geometric Interpretation of Singularity

A and b are consistent
A is nonsingular

A and b are inconsistent
A is singular

A and b are consistent
A is ill conditioned
Effect of Perturbations to b

Consider the solution of a 2×2 system where

$$b = \begin{bmatrix} 1 \\ 2/3 \end{bmatrix}$$

One expects that the exact solutions to

$$Ax = \begin{bmatrix} 1 \\ 2/3 \end{bmatrix} \quad \text{and} \quad Ax = \begin{bmatrix} 1 \\ 0.6667 \end{bmatrix}$$

will be different. Should these solutions be a lot different or a little different?
Norms

Vectors:

\[\|x\|_p = \left(|x_1|^p + |x_2|^p + \ldots + |x_n|^p \right)^{1/p} \]

\[\|x\|_1 = |x_1| + |x_2| + \ldots + |x_n| = \sum_{i=1}^{n} |x_i| \]

\[\|x\|_\infty = \max \left(|x_1|, |x_2|, \ldots, |x_n| \right) = \max_i |x_i| \]

Matrices:

\[\|A\| = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|} \]

\[\|A\|_p = \max_{x \neq 0} \frac{\|Ax\|_p}{\|x\|_p} \]

\[\|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^{m} |a_{ij}| \]

\[\|A\|_\infty = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}| \]
Effect of Perturbations to b

Perturb b with δb such that

$$\frac{\|\delta b\|}{\|b\|} \ll 1,$$

The perturbed system is

$$A(x + \delta x_b) = b + \delta b$$

The perturbations satisfy

$$A\delta x_b = \delta b$$

Analysis shows (see next two slides for proof) that

$$\frac{\|\delta x_b\|}{\|x\|} \leq \|A\|\|A^{-1}\| \frac{\|\delta b\|}{\|b\|}$$

Thus, the effect of the perturbation is small only if $\|A\|\|A^{-1}\|$ is small.

$$\frac{\|\delta x_b\|}{\|x\|} \ll 1 \quad \text{only if} \quad \|A\|\|A^{-1}\| \sim 1$$
Let $x + \delta x_b$ be the exact solution to the perturbed system

$$A(x + \delta x_b) = b + \delta b \quad (1)$$

Expand

$$Ax + A\delta x_b = b + \delta b$$

Subtract Ax from left side and b from right side since $Ax = b$

$$A\delta x_b = \delta b$$

Left multiply by A^{-1}

$$\delta x_b = A^{-1}\delta b \quad (2)$$
Effect of Perturbations to b (Proof, p. 2)

Take norm of equation (2)

$$\|\delta x_b\| = \|A^{-1}\delta b\|$$

Applying consistency requirement of matrix norms

$$\|\delta x_b\| \leq \|A^{-1}\|\|\delta b\|$$ \hspace{1cm} (3)

Similarly, $Ax = b$ gives $\|b\| = \|Ax\|$, and

$$\|b\| \leq \|A\|\|x\|$$ \hspace{1cm} (4)

Rearrangement of equation (4) yields

$$\frac{1}{\|x\|} \leq \frac{\|A\|}{\|b\|}$$ \hspace{1cm} (5)
Multiply Equation (4) by Equation (3) to get

\[
\frac{\|\delta x_b\|}{\|x\|} \leq \|A\|\|A^{-1}\| \frac{\|\delta b\|}{\|b\|}
\]

(6)

Summary:

If \(x + \delta x_b \) is the exact solution to the perturbed system

\[
A(x + \delta x_b) = b + \delta b
\]

then

\[
\frac{\|\delta x_b\|}{\|x\|} \leq \|A\|\|A^{-1}\| \frac{\|\delta b\|}{\|b\|}
\]
Effect of Perturbations to A

Perturb A with δA such that

$$\frac{\|\delta A\|}{\|A\|} \ll 1,$$

The perturbed system is

$$(A + \delta A)(x + \delta x_A) = b$$

Analysis shows that

$$\frac{\|\delta x_A\|}{\|x + \delta x_A\|} \leq \|A\|\|A^{-1}\| \frac{\|\delta A\|}{\|A\|}$$

Thus, the effect of the perturbation is small only if $\|A\|\|A^{-1}\|$ is small.

$$\frac{\|\delta x_A\|}{\|x + \delta x_A\|} \ll 1 \quad \text{only if} \quad \|A\|\|A^{-1}\| \sim 1$$
Effect of Perturbations to both A and b

Perturb both A with δA and b with δb such that

$$\frac{\|\delta A\|}{\|A\|} \ll 1 \quad \text{and} \quad \frac{\|\delta b\|}{\|b\|} \ll 1$$

The perturbation satisfies

$$(A + \delta A)(x + \delta x) = b + \delta b$$

Analysis shows that

$$\frac{\|\delta x\|}{\|x + \delta x\|} \leq \frac{\|A\|\|A^{-1}\|}{1 - \|A\|\|A^{-1}\|\frac{\|\delta A\|}{\|A\|}} \left[\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|b\|} \right]$$

Thus, the effect of the perturbation is small only if $\|A\|\|A^{-1}\|$ is small.

$$\frac{\|\delta x\|}{\|x + \delta x\|} \ll 1 \quad \text{only if} \quad \|A\|\|A^{-1}\| \sim 1$$
The condition number

\[\kappa(A) \equiv \|A\|\|A^{-1}\| \]

depicts the sensitivity of the solution to perturbations in \(A \) and \(b \). The condition number can be measured with any \(p \)-norm. The condition number is always in the range

\[1 \leq \kappa(A) \leq \infty \]

- \(\kappa(A) \) is a mathematical property of \(A \)
- Any algorithm will produce a solution that is sensitive to perturbations in \(A \) and \(b \) if \(\kappa(A) \) is large.
- In exact math a matrix is either singular or non-singular. \(\kappa(A) = \infty \) for a singular matrix
- \(\kappa(A) \) indicates how close \(A \) is to being numerically singular.
- A matrix with large \(\kappa \) is said to be ill-conditioned
In Practice, applying Gaussian elimination with partial pivoting and back substitution to $Ax = b$ gives the exact solution, \hat{x}, to the nearby problem $(A + E)\hat{x} = b$ where $\|E\|_{\infty} \leq \varepsilon_m \|A\|_{\infty}$

Gaussian elimination with partial pivoting and back substitution “gives exactly the right answer to nearly the right question.”

— Trefethen and Bau
An algorithm that gives the exact answer to a problem that is near to the original problem is said to be **backward stable**. Algorithms that are not backward stable will tend to amplify roundoff errors present in the original data. As a result, the solution produced by an algorithm that is not backward stable will not necessarily be the solution to a problem that is close to the original problem.

Gaussian elimination without partial pivoting is *not* backward stable for arbitrary A.

If A is symmetric and positive definite, then Gaussian elimination without pivoting is backward stable.
The Residual

Let \hat{x} be the numerical solution to $Ax = b$. $\hat{x} \neq x$ (x is the exact solution) because of roundoff. The residual measures how close \hat{x} is to satisfying the original equation

$$ r = b - A\hat{x} $$

It is not hard to show that

$$ \frac{\|\hat{x} - x\|}{\|\hat{x}\|} \leq \kappa(A) \frac{\|r\|}{\|b\|} $$

Small $\|r\|$ does not guarantee a small $\|\hat{x} - x\|$. If $\kappa(A)$ is large the \hat{x} returned by Gaussian elimination and back substitution (or any other solution method) is not guaranteed to be anywhere near the true solution to $Ax = b$.
Applying Gaussian elimination with partial pivoting and back substitution to $Ax = b$ yields a numerical solution \hat{x} such that the residual vector $r = b - A\hat{x}$ is small even if the $\kappa(A)$ is large.

If A and b are stored to machine precision ϵ_m, the numerical solution to $Ax = b$ by any variant of Gaussian elimination is correct to d digits where

$$d = |\log_{10}(\epsilon_m)| - \log_{10}(\kappa(A))$$
\[d = |\log_{10}(\varepsilon_m)| - \log_{10}(\kappa(A)) \]

Example:
NUMPY computations have \(\varepsilon_m \approx 2.2 \times 10^{-16} \). For a system with \(\kappa(A) \sim 10^{10} \) the elements of the solution vector will have

\[
\begin{align*}
 d &= |\log_{10}(2.2 \times 10^{-16})| - \log_{10}(10^{10}) \\
 &= 16 - 10 \\
 &= 6
\end{align*}
\]

correct (decimal) digits
1. $\kappa(A)$ indicates how close A is to being numerically singular.

2. If $\kappa(A)$ is “large”, A is **ill-conditioned** and even the best numerical algorithms will produce a solution, \hat{x} that cannot be guaranteed to be close to the true solution, x.

3. In practice, Gaussian elimination with partial pivoting and back substitution produces a solution with a small residual

 $$ r = b - A\hat{x} $$

 even if $\kappa(A)$ is large.
Consider the scalar equation

\[5x = 20 \quad \Rightarrow \quad x = (5)^{-1} \cdot 20 \]

The extension to a system of equations is, of course

\[Ax = b \quad \Rightarrow \quad x = A^{-1}b \]

where \(A^{-1}b \) is the formal solution to \(Ax = b \)

In numpy notation the system is solved with

```python
x = np.linalg.solve(A, b)
```
Given an $n \times n$ matrix A, and an $n \times 1$ vector b the \ operator performs a sequence of tests on the A matrix. MATLAB attempts to solve the system with the method that gives the least roundoff and the fewest operations. When A is an $n \times n$ matrix the Python statement:

```python
x = np.linalg.solve(A,b)
```

solves the linear system by using the LINPACK routines DGESV or ZGESV These routines solve a dense linear system using gaussian elimination with partial pivoting.